Floor slipperiness is a leading cause in slip and fall accidents which are a major source of occupational injuries in Korea. Researchers have estimated the slip and fall related accidents rank number one or two in number of the injured. The objectives of this study were to find the field contamination effect and improvement countermeasure. Slipping and falling are common accidents in large public facilities, especially facility which vulnerable adults generally use as like hospital. So, we measured the coefficient of friction of several floors on the floor in hospital, under dry and wet using BOT-3000. The results of the coefficient of friction measurements showed that floor type and surface conditions were all significant factors affecting the coefficient of friction. The most surprising finding of this study was that there were significant friction improvement when the floors were properly cleaned with cleaning equipments
According to the statistics, occupational fatal injuries by the fork lifts were about 30 per year in whole industrial. Fork lifts are widely used in various parts of industries to improve the efficiency of the work. In this study, the current regulations to be adequate in industrial site have to be renew in order to prevent the fatal injuries by the fork lifts.
Fatal injury analysis were conducted with several accident cases by the fork lifts. For each accident, the causes of the injuries were examined and proper safety measures were proposed.
In this study, the fork lift showed a high fatality rate in industrial accidents and no detailed cause analysis of fatal accidents was conducted in terms of unsafe acts or conditions.
First, fork lifts were the highest of the machines caused the accidents. In order to prevent fatal injuries by the fork lifts, the tarket was manufacturing industry. Second, the order of the cause of cognitive engineering agenda in the manufacture industrial was visibility, responsibility and affordance, and revision of acts was proposed. Third, there was not a lots of different points of human error between occurrence types and business sizes. Forth, number of fatalities by the attacker was more than by the inducer.
According to the statistics, occupational fatal injuries by mobile cranes were about 12 per year in whole industrial. Mobile cranes are widely used in various parts of industries to improve the efficiency of the work. However considerable number of fatal injuries happen each year during the operation of the machines. In this study, the current regulations to be adequate in industrial site have to be renew in order to prevent the fatal injuries by mobile cranes. Fatal injury analyses were conducted with several accident cases by the mobile cranes. For each accident, the causes of the injuries were examined and proper safety measures were proposed. In this study, the mobile crane showed a high fatality rate in industrial accidents and no detailed cause analysis of fatal accidents was conducted in terms of unsafe acts or conditions. This study proposed a revision of the standard guideline as an accident prevention measures through in-depth analysis of fatal accidents. First, among the mainly five machines caused the accidents, mobile crane was higher for the second showed 0.6% for number of fatalities compared to number of mobil cranes and for the third showed 11% for number of fatalities compared to number of injuries. Second, main cause of cognitive engineering agenda was visibility, responsibility, affordance. As the measures to prevent accidents before starting operation, alternative revision for the fool proof including visibility, responsibility, affordance etc. for the fool proof measures was proposed. Third, alternative revision as cognitive accident prevention for the fail safe measures was proposed.
Despite having many attractive properties, ZrO2 ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of ZrO2 and Cr were synthesized from CrO3 and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline 2/3Cr-ZrO2 composite was consolidated by a high-frequency induction heated sintering method within 5 min at 600˚C from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense 2/3Cr-ZrO2 composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and 7MPa·m1/2, respectively. The composite was determined to have good biocompatibility.
Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of Al2O3, MgO and TiO2 were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound Mg4Al2Ti9O25 by high-frequency induction heating process. The highly dense nanostructured Mg4Al2Ti9O25 compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the Mg4Al2Ti9O25 compound were evaluated.