검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2004.12 구독 인증기관 무료, 개인회원 유료
        Pod-edible bean or snap bean is a fairly new crop to domestic farmers but the national demand is steadily increasing in recent years along with the development of western food business and change in dietary patterns. At the same time, much efforts are being made to export it to foreign country, mainly to Japan. The amount of seeds introduced from outside is also continuously increasing along with the enlargement of area planted for the crop. Hybridization breeding for the crop has already been started to supply the cheaper and better seeds which will reduce the seed costs and foster the higher income to the farmers. In this experiment, several technologies related with the production of quality seeds are preliminary investigated. Some of the results obtained are summarized as follows; 1. Highly significant interaction was recognized between planting dates and no. of pods per plant and no. of branches but no interaction between planting dates and plant height and no. of nodes on main stem. Days to maturity was proportionally reduced to later planting dates. 2. Rate of viviparous pods and seeds was gradually increased in later planting dates but rate of germination was increased in earlier planting dates with lower germination rate in white seed coat grains than in colored seed ones. 3. Seed yield was higher in the earlier planting dates with a great deal of varietal difference. Early to mid April was considered to he the optimum planting dates for snap bean in Kyungbuk area. High correlation was recognized between seed yield and no. of pods per plant, no. of seeds per plant, and 100 seed weight. 4. Days to flowering was three and seven days longer in Cheongsong, high mountainous area than in Kunwi, somewhat prairie lowland. One hundred seed weight was also higher in Cheongsong than in Kunwi. Rate of viviparous grains, pods, and decayed seeds was higher in Cheongsong but, at the same time, the rate of germination and seed yield was also higher in Cheongsong. 5. One hundred seed weight of KLG5007 increased continuously up to 35days after flowering and decreased thereafter but that of KLG50027 increased to 40days after flowering and slowly reduced thereafter. The content of crude oil reached to maximum at 40 days after flowering and reduced thereafter. The rate of germination in Gangnangkong 1 was the highest, 89.3%, at 35 days after flowering and reduced thereafter while that in KLG50027 reached to maximum, 70.7%. at 40days after flowering and reduced thereafter. Thus, the optimum harvesting time for snap bean was considered to be 35~40days after flowering. 6. The snap bean pods at yellow bean stage easily became viviparous ones under saturated moisture conditions for 24 hours at . Therefore, it is recommended to harvest pods somewhat earlier than yellow-bean stage and let them do post maturing, especially when it is to be rained.
        4,300원