검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        Robot arms are being increasingly used in various fields with special attention given to unmanned systems. In this research, we developed a high payload dual-arm robot, in which the forearm module is replaceable to meet the assigned task, such as object handling or lifting humans in a rescue operation. With each forearm module specialized for an assigned task (e.g. safety for rescue and redundant joints for object handling task), the robot can conduct various tasks more effectively than could be done previously. In this paper, the design of the high payload dual-arm robot with replaceable forearm function is described in detail. Two forearms are developed here. Each of forearm has quite a different goal. One of the forearms is specialized for human rescue in human familiar flat aspect and compliance parts. Other is for general heavy objects, more than 30 kg, handling with high degree of freedom more than 7.
        2.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        In this article art performing applications of industrial dual-arm robots are introduced. It was real collaboration among robot researchers and artist. Artist designed the performance to use dual-arm robot. Robot researchers collaborated with artist by providing robotic constraints and configuring robot motion. Two art performances were configured with two industrial dual-arm robots. In both performance robots carry objects to be used as moving screens. Both performances rely on the high power and high precision of robots. In addition human-like appearance make those performances be familiar to public
        3.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a design methodology of self-reconfigurable kinematics and control engine for modular and reconfigurable robots. A modular manipulator has been proposed to meet the requirement of task adaptation in versatile needs for service and industrial robot area and the function of self-reconfiguration is required to extend the application of modular robots. Kinematic and dynamic contexts are extracted from the module and assembly information and related codes are automatically generated including controller. Thus a user can easily build and use a modular robot without professional knowledge. Simulation results are presented to verify the validity of the proposed method.
        4.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.
        5.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        Dual arm manipulators have been developed for the entertainment purpose such as humanoid type or the industrial application such as automatic assembly. Nowadays, there are some issues for applying the dual arm robot system into the various fields. Especially, robots can substitute human and perform the dangerous activity such as search and rescue in the battle field or disaster. In the paper, the dual arm manipulator which can be adapted to the rescue robot with the mobile platform was developed. The kinematic design was proposed for the rescue activity and the required specification was determined through the kinematic analysis and the dynamic analysis in the various conditions. The proposed dual arm manipulator was manufactured based on the vibration analysis result and its performance was proved by the experiment.
        6.
        2014.08 KCI 등재 서비스 종료(열람 제한)
        Tendon driven robot mechanisms have many advantages such as allowing miniaturization and light-weight designs and/or enhancing flexibility in the design of structures. When designing or analyzing tendon driven mechanisms, it is important to determine how the tendons should be connected and whether the designed mechanism is easily controllable. Graph representation is useful to view and analyze such tendon driven mechanisms that are complicatedly interconnected between mechanical elements. In this paper, we propose a method of generalized graph representation that provides us with an intuitive analysis tool not only for tendon driven manipulators, but also various other kinds of mechanical systems which are combined with tendons. This method leads us to easily obtain structure matrix - which is the one of the most important steps in analyzing tendon driven mechanisms.