검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluates the structural stability of a hydrogen shut-off valve used in fuel cell electric vehicles (FCEVs) under extreme operating conditions, including high pressure and cryogenic temperatures. Using a one-way Fluid-Structure Interaction (FSI) analysis based on ANSYS CFX and Static Structural, the study simulates thermal and pressure loads on key components. The results show that the maximum equivalent stress occurs in the rod (361.22 MPa), while safety factors for all components remain above 2.11, confirming adequate structural integrity. In order to secure higher structural stability and reduce the weight of parts, attention should be paid to the selection of materials and improving the shape. The findings provide a valuable basis for improving the design reliability and optimization of hydrogen shut-off valves for future automotive applications. The leak tightness and durability tests of the hydrogen shut-off valve under cryogenic conditions verified its structural integrity, confirming its safety even after more than 5.2 million repeated operations.
        4,000원
        2.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a numerical analysis study on the heat transfer characteristics according to the opening and closing of the hydrogen shut-off valve was performed, and the temperature distribution of the key components of the hydrogen shut-off valve was predicted through the result. The ANSYS CFX program was used to predict the heat transfer characteristics of the hydrogen shut-off valve. When the hydrogen shut-off valve was open, the average temperature of the O-ring, which prevents hydrogen leak inside the solenoid valve, was approximately -40℃, and the plunger showed a maximum of -40℃ and a minimum of -110℃. When the hydrogen shut-off valve was completely closed, the O-ring showed approximately 24.82℃ and the plunger showed approximately 24.71℃, which were almost at room temperature.
        4,000원
        3.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen valve used in this study is intended to be applied to a automobile, and since there is a limit to the length of the stem, it is necessary to review the optimized stem, and for this, it is required to investigate the heat transfer characteristics of the hydrogen shut-off valve. For this, the temperature of the entire shut-off valve and especially the plunger and O-ring, which are key components in the solenoid valve driving the hydrogen shut-off valve, was calculated using the ANSYS-CFX flow analysis program. From the analysis results, the length of the stem capable of maintaining the design temperature of -40℃ or higher should be at least 139 mm, and it is judged that it should be 140 mm or more considering safety. When determining the stem length of the hydrogen blocking valve for automobiles, constraints on installation in automobiles should be considered.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a numerical analysis study was conducted on the flow characteristics according to the internal flow path change and differential pressure of the hydrogen shut-off valve, and through this, the pressure loss characteristics and flow coefficient of the hydrogen shut-off valve were predicted. ANSYS CFX program was used to predict the flow characteristics of the hydrogen shut-off valve. When the flow path gap was 1.3 mm, the design conditions of the hydrogen shut-off valve were satisfied, and the value of the flow coefficient of the valve was about 1.53. As the inlet pressure of the hydrogen shut-off valve increases, the outlet flow rate increases, but regardless of the inlet pressure, the flow coefficient of the valve is almost constant, ranging from 1.53 to 1.56, indicating that it is the inherent flow coefficient of the designed hydrogen shut-off valve.
        4,000원