고출력 IC회로의 방열재료 및 전기접점재료로 이용되고 있는 W-Cu복합재료를 기계적합금화법으로 제조하였다. 기계적합금화한 분말을 300MPa로 폭 16mm, 높이 4mm의 원반형으로 제조하였다. 소결은 1200˚C에서 1400˚C까지 수소분위기에서 행하였다. 이렇게 제조된 시편의 절단된 면을 연마하여 SEM으로 관찰하였다. 균질한 W-Cu복합재료를 10시간 기계적합금화를 행한 후에 얻을 수 있었고, 1330˚C에서 1시간 소결한 시편의 경우 거의 99%에 가까운 치밀한 조직을 얻을 수 있었다. 또한 기계적합금화시간이 증가함에 따라서 Fe의 혼입은 직선적으로 증가하였으며, 이로 인한 금속간화합물상의 형성은 W입자 성장을 방해하고 경도를 증가시켰다.
Cu-10wt%W composite powders have been manufactured by a high energy ball milling technique. The composite powders were pressed at 250 MPa and sintered in a dry hydrogen at 103 for 4 hours. After sintering, Cu-10wt%W composite materials were forged. And the arc-resistance of forged materials which have the same relative density of 94% has been tested. Composite particles, i.e. tungsten particles distributed homogeneously in the copper matrix, was formed after 480 min mechanical alloying. Densities of these sintered materials were ranged from 74 to 84%. Densification degree was due to the formation of composite powders. As the mechanical alloying time increased, the hardness was increased and tungsten particle size was decreased. Arc loss of the forged specimens was decreased as increasing the mechanical alloying time.
In this study, the vibratory crusher was developed to develop the high quality recycled coarse aggregate for concrete. The vibratory crusher was installed on the production line of recycled aggregate and the produced recycled aggregate was compared with that from conventional crusher for evaluation of the performance of vibratory crusher and the quality of the produced recycled aggregate. The results showed that the performance of the recycled aggregate was better than conventional aggregate by 39% in water absorption ratio, 10% in absolute dry density, 31% in resistance to wearing, 14% in satisfactory particle size distribution, 41% in volume of clay ball and 32% in safety, thus showing that the quality of the recycled coarse aggregate is much improved. The microscopic observation showed that a lot of mortar, minute cracks and segregation have been removed.