검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        1.
        2022.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        14.
        2017.03 구독 인증기관 무료, 개인회원 유료
        3,000원
        15.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel (Ag-30CaO·70SiO2 gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological Ag-30CaO·70SiO2 is tested. This was done to impart antimicrobial activity to the 30CaO·70SiO2. Ag ion was added during sol-gel synthesis to replace the H2O added during the making of the 30CaO·70SiO2 gel, which has silver solutions of various concentration. After the sol-gel process, 1N-HNO3 solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-SiO2 gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is Ag-30CaO·70SiO2 gel.
        4,000원
        16.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of redox reaction on preparation of high purity α-alumina from selectively ground aluminum dross. Preparation procedure of the α-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide(H2O2). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at 60˚C and heat-treated at 1300˚C to form α-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of α-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of α-alumina with fewer impurities after the redox reaction. Consequently, high purity α-alumina from aluminum dross can be fabricated through the process by redox reaction.
        4,000원
        17.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        National R&D programs play an important role in the development of a country in this age of the knowledge economy. Since many numbers of R&D programs compete for limited resources such as national R&D budget, the R&D program evaluation problem is a challe
        4,000원
        18.
        2009.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A study on the dry beneficiation of sericite occurring in the Daehyun Mine of the Republic of Korea region as performed by applying selective grinding and air classification techniques. Quartz and sericite occurred in the raw ore as major components. The results of liberation using a ball mill and an impact mill showed that the contents of R2O were increased while SiO2 was decreased in proportion to decreasing particle size. According to the XRD, XRF analysis and the EDS of SEM analysis, the ball mill gave a better grade product in R2O content than the impact mill when the particle size was the same. When the raw ore was ground by the impact mill with arotor speed 57.6 m/sec and then followed by 15,000rpm classification using an air classifier, the chemical composition of the over flowed product was 49.65wt% SiO2, 32.15wt% Al2O3, 0.13wt% Fe2O3, 10.37wt% K2O, and 0.14wt% Na2O. This result indicates that the R2O contents were increased by 49.5% compared to that of the raw ore. From these results described above, it is suggested that hard mineral such as Quartz little ground by selective grinding using impact mill whereas soft mineral such as sericite easily ground to small size. As a result of that hard minerals can be easily removed from the finely ground sericite by air classification and the R2O grade of thus obtained concentrate was improved to higher than 10wt% which can be used for ceramics raw materials.
        4,000원
        19.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Non-sintering cement was manufactured with briquette ash. Alkali activator for compression bodies used a NaOH solution. In order to apply alkali-activated briquette ash and the non-sintering cement to concrete, several experimental studies were performed. It was necessary to study the binder obtained by means of a substitute for the cement. This study concentrated on strength development according to the concentration of NaOH solution, the curing temperature, and the curing time. The highest compressive strength of compression bodies appeared as 353kgf/cm2 cured at 80˚C for 28 days. This result indicates that a higher curing temperature is needed to get a higher strength body. Also, geopolymerization was examined by SEM and XRD analysis after the curing of compression bodies. According to SEM and XRD, the main reaction product in the alkali activated briquette ash is aluminosilicate crystal.
        4,000원
        20.
        2007.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was conducted to beneficiation of magnesite by dry grinding and air classification. The raw ore was ground in a ball mill and pin mill controlled with grinding time and linear velocity of grinding media and fractionated in an air classifier. Pin mill is more efficient than the ball mill for liberation. As a result, the MgO grade of concentrate was 47.1% with recovery of 51.51% for classified with 3,000rpm of air classifier for ground at 13,000rpm in pin mill.
        4,000원
        1 2