검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel (Ag-30CaO·70SiO2 gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological Ag-30CaO·70SiO2 is tested. This was done to impart antimicrobial activity to the 30CaO·70SiO2. Ag ion was added during sol-gel synthesis to replace the H2O added during the making of the 30CaO·70SiO2 gel, which has silver solutions of various concentration. After the sol-gel process, 1N-HNO3 solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-SiO2 gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is Ag-30CaO·70SiO2 gel.
        4,000원