검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel (Ag-30CaO·70SiO2 gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological Ag-30CaO·70SiO2 is tested. This was done to impart antimicrobial activity to the 30CaO·70SiO2. Ag ion was added during sol-gel synthesis to replace the H2O added during the making of the 30CaO·70SiO2 gel, which has silver solutions of various concentration. After the sol-gel process, 1N-HNO3 solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-SiO2 gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is Ag-30CaO·70SiO2 gel.
        4,000원
        2.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of redox reaction on preparation of high purity α-alumina from selectively ground aluminum dross. Preparation procedure of the α-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide(H2O2). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at 60˚C and heat-treated at 1300˚C to form α-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of α-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of α-alumina with fewer impurities after the redox reaction. Consequently, high purity α-alumina from aluminum dross can be fabricated through the process by redox reaction.
        4,000원
        3.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at 60˚C for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.
        4,000원