In this study, Tröger’s Base (TB) chemistry is exploited to introduce tunable microporosity in commercially available polyimide membranes. Considering that TB is a rigid, V-shaped and bridged alicyclic amine, there have been notable reports on accessing feasibility in TB for gas separation membrane applications. However, this presentation shows a different but much viable preparation approach in comparison to the already reported ones. This approach only requires commercially available monomers with two preparation steps, thus it can accommodate scalable and practical productions. Five different kinds of homopolymers and six copolymers were explored to demonstrate structure-property-performance relationships and to evaluate practical applicability towards industrial level.
Thermally rearranged polybenzoxazole (TR-PBO) membranes has a excellent gas separation properties due to its high fractional free volume and suitable cavity size.1) Furthermore, thermally rearranged poly(benzoxazole-co-imide) (TR-PBOI) materials show the improved mechanical strength and gas separation properties.2) In this study, TR-PBOI asymmetric hollow fiber membranes was fabricated via NIPS method. In detail, the influence of co-solvent system and polymeric additives with various molecular weight on gas separation performance was observed. For further performance optimization, dope & bore flow rate and coagulation temperature were controlled.3) The characterization on membranes was conducted by FE-SEM, pure and mixed gas permeation test with micro-GC system.
Polymeric materials have been widely used in energy-related applications including fabrication of batteries and fuel cells, pressure retarded osmosis, gas separation and reverse electrodialysis processes. Despite these various versatility, their poor mechanical properties still remain as obstacles for applying to industrial levels. As a way of improving the mechanical properties, Tröger's Base (TB) which is a rigid, V-shaped, and bridged bicyclic amine have been recently introduced. In this work, polyimides incorporating TB units (PI-TBs) were synthesized in-situ polycondensation reaction using dimethoxymethane (DMM). PI-TB membranes were prepared and physicochemical characteristics including mechancial properties were investigated.