지구온난화 문제에 대응하기 위해 온실가스 배출 저감을 위한 다양한 규제와 정책이 시행되고 있다. 이러한 배경 속에서 탄소중립을 목표로 하는 국가들이 늘어나고 있으며, 이에 따라 소형원자로모듈(Small Modular Reactor 이하 SMR)이 새로운 발전소 모델 로 주목받고 있다. SMR은 전통적인 대형 원자력 발전소 크기의 5~10% 수준이지만, 수백 메가와트(MW)급의 발전 용량을 갖춘 고효율 시스템이다. 이 발전소는 화석 연료 기반 발전소에 비해 탄소 발생을 줄일 수 있으며, 신재생에너지의 불안정한 에너지 공급을 보완할 수 있는 장점이 있다. 하지만, 원자력 발전소는 사고 시 방사선물질 누출의 위험성이 있어 주변 주민의 반대를 받아 왔다. 이러한 문제 를 해결하기 위해 부유식 소형 원자력 발전선이 주목받고 있다. 부유식 소형 원자력 발전소는 해양에 설치되어 부지확보, 인근 거주민 보상, 협의 과정이 간소화되고, 자연재해에 대한 안전성이 높다. 본 연구에서는 SMR 발전선의 파랑 중 예인 안정성을 평가 하였다. 해 상상태 3, 4, 5에서의 운동해석 결과, 해상상태 5 이하에서는 예인하여 목적지까지 이동하는데 필요한 내항성능 기준을 만족시킬 수 있 음을 확인하였다.
구조물은 지진, 풍랑 등과 같은 외부의 충격에 대해서 노출되어 있기 때문에 대규모의 피해가능성이 항상 존재한다. 이러한 외부에 대한 충격흡수 장치는 여러 가지가 있다. 이러한 기구 중에서 널리 사용되고 있는 것이 기계적 에너지를 소산시키는 유압 감쇠기이다 본 논문에서는 유압 감쇠기의 단점을 보완하고 보다 효율이 높은 감쇠기를 나노기술을 응용하여 새로운 감쇠기에 대한 기초적 이론연구를 하였다. 새로운 감쇠기는 내부에 점성 유체 대신에 무기재료의 입자를 유체와 혼합하여 사용하였고 오리피스를 생략함으로 해서 보다 간단한 구조로 설계하였다. 나노 단위 기공에서의 유동 현상을 설명하기 위해서는 기존의 유체역학에 대한 지배방정식 및 가설들이 더 이상 적용이 되지 않는 단점이 있다. 본 연구에서는 지금까지 명확하게 규명되지 않았던 감쇠기의 열 발생, 나노 유동, 그리고 에너지 소산에 대한 이론적 해석을 수행하였다. 그리고 다공 입자 구조에 따른 에너지 소산에 대한 영향을 모델링하여 조사하였다. 감쇠 효과를 검토하기 위해 기존의 유압 감쇠기와 에너지 소산효율을 비교하였다. 또한 감쇠 효율을 수치적인 해석결과와 실험 결과를 서로 비교하여 검토하였다.
본 연구에서는 나노기술을 이용하여 에너지 감쇠 기능을 활용한 감쇠기 개발에 대한 연구를 하였다. 유체 감쇠기를 대체하는 완충역할을 하는 미로구조를 가지는 실리카 겔 입자를 사용하였으며, 입자에 관련한 작동 유체로는 물을 사용하여 그 효과를 검증하였다. 콜로이드 감쇠기를 구현하기 인해서는 형성된 실리카 겔 입자의 표면을 유기 실리콘 매질을 이용한 소수화 코팅 처리를 하였다. 정적 하중 상태에서의 가역적 콜로이드 감쇠기에 대한 실험을 수행하였다. 콜로이드 감쇠기내 다공질 입자의 나노 유로(pore)와 다공성 입자의 직경, 다공성 입자의 구조, 그리고 대기압 상태에서 유체의 출입을 통제하기 위한 코팅처리의 분자 간 길이와 같이 여러 가지 요인의 콜로이드 감쇠기 이력현상에 대한 영향을 평가하였다. 감쇠기의 소산 에너지양과 효율에 대해서도 조사하여 유압 감쇠기 보다 뛰어난 결과를 얻었으며 콜로이드 감쇠기로 사용 가능하다는 사실을 입증하였다.
본 연구에서는 나노기술을 이용하여 에너지 감쇄 기능을 활용한 내진용 감쇄기 개발에 대한 연구를 하였다. 구조물에 사용되는 기존의 유체 감쇄기를 대체하는 무기재료를 이용한 새로운 감쇄기에 대한 기초적 연구를 하였다. 완충역할을 하는 입자로는 미로구조를 가지는 실리카겔을 사용하였으며, 입자에 관련한 작동 유체로는 물을 사용하여 그 효과를 검증하였다. 콜로이드 감쇄기를 구현하기 위해서는 형성된 실리카 겔 입자의 표면을 유기 실리콘 매질을 이용한 소수화 코팅 처리를 하였다. 콜로이드 감쇄기의 이력곡선은 서로 다른 소수화 코팅 처리가 된 입자의 혼합과 소수화 처리시의 분자간 거리에 의해서 조절이 가능함을 알 수 있었다. 콜로이드 감쇄기의 에너지 소산양은 상이한 소수화 처리 정도와 서로 코팅처리량이 서로 다른 재료를 혼합함으로써 제어 할 수 있음을 확인하였다. 기존의 유압 감쇄기에서는 나타나지 않는 이러한 특징은 콜로이드 감쇄기가 충격 흡수 장치로 사용 가능하다는 사실을 입증한다.
기존의 면진 기술을 일반건물에 적용하기 위해서는 낮은 가격과 낮은 무게로 면진 탄성받침 이 제작 및 공급되어야 할 필요가 있다. 이에 본 논문에서는 일반건물에 면진 기술을 적용하기 위한 방법으로 기존의 적층고무 면진 탄성받침에 철판을 대체하여 섬유로 보강하고, 고무와 섬유의 층으로 구성된 스트립형의 면진 탄성받침을 제안하였다. 또한 제안한 섬유보강 면진 탄성받침을 설계 및 제작하여 수직실험과 수평실험을 수행하여 그 성능을 검증하였다. 따라서, 스트립형의 면진 탄성받침이 제작가능하며, 필요한 크기로 절단이 가능함을 보였다. 또한 수평 실험 수직 실험을 통하여 기존의 적층고무 면진 탄성받침을 대체하여 사용할 수 있음을 보였다. 이 연구결과로 인해 스트립형의 섬유보강 면진 탄성받침이 저가건물에 널리 사용될 수 있을 것으로 기대된다.
면진베어링으로 기존에 사용되고 있는 철판보강 면진베어링에서 철판을 섬유로 대체하여 섬유보강 면진베어링을 설계 및 제작하였다. 섬유면진보강베어링의 특성을 파악하기 위해서 철판보강 면진베어링과 섬유보강 면진베어링에 대해 수평실험과 압축실험을 수행하였다. 시험결과 섬유보강 면진베어링의 유효 감쇠는 천연고무 면진베어링에 비해서 높았다. 이 결과는 지진하중하에서 섬유보강 면진베어링은 에너지 분산능력이 뛰어나다는 것을 의미한다. 이 연구결과로 인해 섬유보강 면진베어링이 저가건물에 널리 사용될 수 있을 것으로 기대된다.
본 논문에서는 비선형 추계적 구조시스템의 지진에 대한 동적응답 해석방법을 제안하였다. 부분구조합성법에 기초한 섭동법을 응용하여 지진외력에 의한 불규칙진동의 시간응답과 주파수응답 해석과정을 정식화하였다. 이 방법에서는 대형 .동적 시스템의 지배방정식인 비선형 미분방정식을 몇 개의 비선형 모달방정식으로 근사 변환한다. 각 분계는 비선형 복원력항을 모드좌표로 근사변환함으로써 선형화하여 합성되어진다. 모드좌표에서 섭동법을 이용하여 비선형 운동방정식의 불규칙 진동에 대한 해를 구함으로 해석과정이 축소되어진다. 제안된 방법의 적합성과 유효성을 평가하기 위하여 비선형성을 가진 기계구조 시스템을 해석하였다. 이 해석결과는 불규칙 진동 응답을 해석하는데 유효한 접근방법으로 판단되며 내진 설계에 기여할 것으로 예상된다.
The purpose of this study was to investigate yield rate of carbon fibers reinforced epoxy composites in near-critical water. A CFRP (carbon fiber reinforced plastic) laminate stacked with twenty layers was used and the specimens were cut in 10 × 50 mm (thickness: 4 mm) size. The CFRP sample was placed and heated within the non-stirred bath autoclave with an electric furnace. The yield percentage is calculated by the weight percentage of eliminated resin. To check the surface of carbon fiber, scanning electron microscopy was employed. The results showed that the removal percentages of weight were between 53.9% and 97.1%. The best yield was significantly increased up to 97.1% when operating in 573 K (14 MPa) condition. This research suggests an basic data to design a commercial scale recycling system or a new low cost recycling system for CFRP waste.