검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide whichcan enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was thenprepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a NiCl2 environment. Afterremoving surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemicalvapor deposition at 200oC. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing(RTA) process at 730oC for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as thecrystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer wasepitaxially crystallized with the help of NiSi2 precipitates that originated from the poly-Si seed layer. The crystallinity of theSERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process.The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to 1×1018cm−3. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by theSERTA process were 85cm2/V·s and 1.23V/decade at Vds=−3V, respectively. The off current was little increased underreverse bias from 1.0×10−11 A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakagecurrent can be fabricated with more precise experiments.
        4,000원