Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide whichcan enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was thenprepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a NiCl2 environment. Afterremoving surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemicalvapor deposition at 200oC. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing(RTA) process at 730oC for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as thecrystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer wasepitaxially crystallized with the help of NiSi2 precipitates that originated from the poly-Si seed layer. The crystallinity of theSERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process.The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to 1×1018cm−3. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by theSERTA process were 85cm2/V·s and 1.23V/decade at Vds=−3V, respectively. The off current was little increased underreverse bias from 1.0×10−11 A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakagecurrent can be fabricated with more precise experiments.
Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.