Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.
본 논문에서는 수직으로 시추된 해양 파일에 대한 새로운 동적 해석절차가 제안되고 전형적 설계문제에 의하여 검증된다. 해수에 잠긴 파일의 구조는 물론 해양파도와 조류에 의한 힘도 유한요소법에 의해서 정식화되고 모델링된다. 유한요소 방정식에 적합한 파력을 구하기 위해서 여러 가지 파도이론 가운데서도 Airy의 파도이론이 시험되고 선정되었다. 조류의 후방와류에 기인한 횡방향 양력은 Strouhal 진동수와 적절한 양력계수를 가진 간단한 조화함수에 기초한다 파일에 대한 고유진동수 해석과 주파수 응답해석은 정식화 결과를 NASTRAN에 입력하여 계산되었다. 여기서 제안된 절차에 의해 얻어진 동적 변위와 응력의 결과는 기본설계해석 단계로서 해양파일의 파력과 조류 양력에 의한 동적거동을 구할 수 있으며 설계에 응용될 수 있음을 보여준다
대변형 탄소성 프레임의 해석은 운동학적, 재질적, 수치해법상으로 매우 복잡하여 정확하고 효율적인 요소나 알고리즘이 부족하다. 본 논문에서는 3차원 보요소에 대하여 봉이론으로부터 유한요소를 만들고 소성을 적용하기 위하여 Cauchy응력과 공학적변형률을 구성방정식에 적용하는 방법으로 객관화된 증분해법에 의한 보요소를 제안하였다. 특히 항복조건의 만족을 위하여 정확하고도 효율적인 소성방정식의 적분법을 개발하고 적용하였으며 연속법과 일차원 탐색 등을 고려하여 광역수렴성과 2차 수렴속도를 갖는 수치해법을 개발하고 예제를 통하여 확인하였다.
The rapid development of some industries generates a huge amount of useless biowastes. Recently, biosorption, which can use biowastes as biosorbents, has attracted attention as an environmentally friendly method for the removal of ionic pollutants from wastewaters. For this reason, many researchers have investigated the biosorption capacities of various biowastes. In this study, fermentation waste (Escherichia coli) was used as a biosorbent for the removal of various organic and inorganic pollutants: i.e., cationic dye (methylene blue (MB)), anionic dye (Reactive Red 4 (RR4)), cationic metal (cadmium (II)), and anionic metal (arsenic (V)). The uptake of the cationic pollutants by the biosorbent increased as solution pH was increased. The RR4 uptake increased with a decrease in solution pH. In the case of the anionic metal (As (V)), it was not well removed in the range of pH 2-7. To examine adsorption rates and mechanisms, kinetic and isotherm experiments were conducted, and various kinetic and isotherm models were used to fit the experimental data. The maximum adsorption capacities of MB and RR4 were predicted to be 231.3 mg/g and 257.6 mg/g, respectively. In conclusion, fermentation waste (E. coli) is a cheap and abundant resource for the manufacture of effective biosorbents capable of removing both cationic and anionic (in) organic pollutants from wastewaters.
현대문명은 많은 의약품 및 식료품을 발효공정을 통해 생산하고 있다. 이 과정에서 다량의 발효균체 폐기물이 발생되는데 이는 매립, 소각, 해양투기와 같은 다양한 방법들로 처리되고 있다. 그러나 처리방법 중 가장 큰 비중을 차지하던 해양투기가 런던협약으로 인해 전 세계적으로 금지됨으로 우리나라뿐만 아니라 전 세계적으로 발효균체 폐기물 처리에 대한 새로운 해결방안이 도출해야 하는 상황에 직면하였다. 발효 폐기물 처리에 효과적인 방법으로 최근 대두되고 있는 것이 발생한 폐기물들을 흡착소재로 사용하여 적용하는 생체흡착 기술이다. 생체흡착 기술은 일반적으로 버려지는 죽은 생물들이나 자연에서 발생하는 부산물들을 그대로 이용하여 폐기물 처리비가 들지 않는 경제적인 장점이 있다. 그러나 지금까지의 생체흡착연구는 대부분 특정 금속에 결합력이 우수한 천연바이오매스를 선발하는데 그쳤다. 본 연구에서는 그보다 더 나아가 흡착 가능성을 보인 천연바이오매스의 적절한 개질을 통해 상용화 되어 있는 이온교환수지 보다 더 뛰어난 흡착제를 제조하였다. 그리고 이렇게 만들어진 흡착제를 특정 금속이 아닌 다양한 산업에서 발생되는 중금속, 희귀금속 및 비철금속 등에 대한 각각의 흡착 성능을 보았으며, 현장 적용을 위한 온도 및 다른 이온들의 저해 현상 등을 조사하였다. 본 연구는 기존 연구에서 루테늄 회수에 효과적인 성능을 보였던 발효 폐기물(C.glutamicum)을 polyethylenimine(PEI)로 개질을 통해 만든 흡착제를 이용하였다. 이 흡착제는 기존 이온 교환 수지보다 10배 이상의 고성능을 가진 것으로 조사 되었다. 실험 대상은 Cd(II), Cr(VI), As(V), Mn(VII), ClO4-, PO42- 등 환경에 피해를 주는 물질들과 Au(I)와 같은 경제적 가치가 높아 회수해야 하는 회수해야 하는 희귀금속에 대한 흡착성능을 다각적으로 평가하였다. Cd(II)과 같은 양이온 중금속은 흡착제 특성상 흡착성능이 좋지 않은 것으로 조사되었으며 Cr(VI), Mn(VII)은 흡착 기작이 단순 흡착 기작뿐만 아니라 산화-환원과 같은 복합 기작 제거 형태를 보여주었다. As(V), ClO4-, PO42- 는 기존 흡착제의 성능과 비교하였을 때 매우 좋은 효능을 가지는 것을 보여주었다. 한, 대부분의 이온들이 sulfate 및 chloride에 저해를 받았으며, 온도의 효과는 미미한 것으로 조사되었다. 회수대상인 Au(I) 경우 qmax 값은 103.18 mg/g (Langmuir model)으로 실험되었으며 다른 흡착제보다 우수한 성능을 보임을 확인하였다.
하수처리장 운영 시 생성되는 하수슬러지는 하수처리장에서 배출되는 폐기물의 대부분을 차지한다. 발생한 하수슬러지의 처리는 퇴비화, 사료화, 매립, 소각, 에너지화, 재활용, 해양투기 등의 여러 방법으로 이루어졌다. 그러나 2013년 런던 협약 발효에 따라 처리 방법 중 30~40%를 차지하던 해양투기가 금지되었다. 해양투기 다음으로 많이 사용된 방법은 육상매립이나, 육상매립의 경우 부지 확보가 점차 어려워지고 환경규제의 강화로 매립하는 양이 감소되고 있다. 따라서 하수처리장에서 발생하는 슬러지를 최소화 하는 동시에 자원으로 활용할 수 있는 적정 기술의 필요성이 대두되고 있다. 여러 적정 기술 중 혐기성소화는 하수슬러지를 혐기 미생물을 이용하여 메탄을 생성하는 가용화하는 대표적인 방법이다. 혐기소화조 운영에 있어서 하수슬러지를 바로 투입하여 처리하는 경우 낮은 소화 효율을 보이므로 소화조 전단에 전처리 기술을 배치하여 소화 효율을 향상 시킬 수 있다. 이런 전처리 기술에는 효소에 의한 생물학적 처리, 초음파, 오존, 원심분리, 액체전단, 분쇄의 기계적 처리, 산화, 알칼리에 의한 화학적 처리, 열처리가 있다. 그 중 열전처리 공정은 슬러지의 부피 감량과 불필요한 화합물의 분해 뿐만 아니라 슬러지 내의 병원균도 제거 가능한 장점을 가진다. 본 연구를 통해 열전처리 공정의 특성을 확인하였으며 공정 이후 생성된 물질의 특성도 평가하였다. 실험은 회분식 반응기에서 진행 되었으며, 혐기조건을 만든 후 열을 가하여 운전하였다. 실험 조건은 온도, 시간, 슬러지 함량에 따라 설정하였다. 각 조건에 따른 시료를 분석한 결과 건조 중량 1g을 기준으로 휘발성유기물질의 초기 농도가 0.67 g 일 때 최대 0.002 g까지 감소가 확인되었다. 감소한 휘발성 유기물질은 용존 유기물 형태로 변경되었고, COD 0.071 - 0.158 g-C/L 또는 TC 0.04 - 0.085 g-C/L 의 증가가 확인되었다. 이외에 TN은 3 - 22 mg-N/L의 증가가 확인되었고, 질산성 질소 또는 아질산성 질소는 미량 발견되었으며, 암모니아 형태의 N이 0.34 - 10.36 mg-N/L로 존재하는 것이 확인되었다.
비소는 대표적인 지하수 오염물질로써 장기 음용시 색소침착, 피부 각화증, 신장질환 및 암을 유발하는 것으로 알려져 있다. 최근 해외 언론 보도에 따르면, 중국의 경우 2천만명이 비소로 오염된 지하수를 마시고 있을 가능성이 있다는 연구 결과가 사이언스에 발표되어 파문이 일었다. 국내에서도 폐광산 주변 토양 및 지표수가 비소 등의 중금속으로 오염되어 그 처리방안이 심각하게 다루어지고 있다. 따라서 본 연구에서는 자연계에 존재하는 대표적인 비소 형태인 비산염(arsenate) 제거를 위해 생체흡착제에 의한 비산염의 흡착 및 탈착 특성을 연구하였다. 본 연구에 사용된 생체흡착제는 발효폐기물을 PEI로 개질한 것으로 다량의 아민기를 가지고 있어 음이온성 교환수지의 기능을 가진다. 비산염은 pH3~6의 영역에서 1가 음이온(H2AsO4-)으로 존재하기 때문에 pH가 낮아질수록 비산염의 흡착 속도 및 흡착량이 증가하였다. 하지만 pH가 3 이하로 더욱 낮아지게 되면 오히려 탈착 현상이 일어났다. 그 이유는 pH 3 이하에서는 비산염이 0가의 형태(H3AsO4)로 전환될 뿐만 아니라 pH 조절에 사용된 산성용액에 포함된 염소이온이나 황산이온에 의해 1가 음이온성 비산염(H2AsO4-)이 탈착되기 때문이었다. 흡착된 비소는 0.01M NaOH 용액을 이용해 100% 탈찰할 수 있었다. 다만 수회 반복된 흡탈착 실험결과 흡탈착이 반복될수록 흡착제의 질량감소로 인해 흡착량이 감소하였다.