Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.
The rapid development of some industries generates a huge amount of useless biowastes. Recently, biosorption, which can use biowastes as biosorbents, has attracted attention as an environmentally friendly method for the removal of ionic pollutants from wastewaters. For this reason, many researchers have investigated the biosorption capacities of various biowastes. In this study, fermentation waste (Escherichia coli) was used as a biosorbent for the removal of various organic and inorganic pollutants: i.e., cationic dye (methylene blue (MB)), anionic dye (Reactive Red 4 (RR4)), cationic metal (cadmium (II)), and anionic metal (arsenic (V)). The uptake of the cationic pollutants by the biosorbent increased as solution pH was increased. The RR4 uptake increased with a decrease in solution pH. In the case of the anionic metal (As (V)), it was not well removed in the range of pH 2-7. To examine adsorption rates and mechanisms, kinetic and isotherm experiments were conducted, and various kinetic and isotherm models were used to fit the experimental data. The maximum adsorption capacities of MB and RR4 were predicted to be 231.3 mg/g and 257.6 mg/g, respectively. In conclusion, fermentation waste (E. coli) is a cheap and abundant resource for the manufacture of effective biosorbents capable of removing both cationic and anionic (in) organic pollutants from wastewaters.
비소는 대표적인 지하수 오염물질로써 장기 음용시 색소침착, 피부 각화증, 신장질환 및 암을 유발하는 것으로 알려져 있다. 최근 해외 언론 보도에 따르면, 중국의 경우 2천만명이 비소로 오염된 지하수를 마시고 있을 가능성이 있다는 연구 결과가 사이언스에 발표되어 파문이 일었다. 국내에서도 폐광산 주변 토양 및 지표수가 비소 등의 중금속으로 오염되어 그 처리방안이 심각하게 다루어지고 있다. 따라서 본 연구에서는 자연계에 존재하는 대표적인 비소 형태인 비산염(arsenate) 제거를 위해 생체흡착제에 의한 비산염의 흡착 및 탈착 특성을 연구하였다. 본 연구에 사용된 생체흡착제는 발효폐기물을 PEI로 개질한 것으로 다량의 아민기를 가지고 있어 음이온성 교환수지의 기능을 가진다. 비산염은 pH3~6의 영역에서 1가 음이온(H2AsO4-)으로 존재하기 때문에 pH가 낮아질수록 비산염의 흡착 속도 및 흡착량이 증가하였다. 하지만 pH가 3 이하로 더욱 낮아지게 되면 오히려 탈착 현상이 일어났다. 그 이유는 pH 3 이하에서는 비산염이 0가의 형태(H3AsO4)로 전환될 뿐만 아니라 pH 조절에 사용된 산성용액에 포함된 염소이온이나 황산이온에 의해 1가 음이온성 비산염(H2AsO4-)이 탈착되기 때문이었다. 흡착된 비소는 0.01M NaOH 용액을 이용해 100% 탈찰할 수 있었다. 다만 수회 반복된 흡탈착 실험결과 흡탈착이 반복될수록 흡착제의 질량감소로 인해 흡착량이 감소하였다.