검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2013.11 서비스 종료(열람 제한)
        리튬은 주기율표상의 가장 가벼운 금속으로 산업, 에너지 및 약품 등 다방면에서 경제에 중요한 역할을 담당하고 있다. 이런 리튬은 자연 상 지질매체(암석)와 물에 흔히 존재하는데 많은 화성암, 변성암 및 퇴적암 그리고 해수, 호수, 온천수 및 지하수에 다양한 농도로 나타난다. 리튬은 지각의 암석 속에는 대체로 32 ~ 65 ppm, 해수(대양)에는 0.17 ~ 0.2 ppm 그리고 고농도로 농축된 염호(Brine Lake)나 염지하수(Brine Groundwater)의 경우에는 200 ~ 400 ppm의 농도를 보인다. 매장량으로 보았을 때 전 세계 리튬의 55 ~ 60%가 염호(염지하수 포함)에 부존하고 있다. 리튬탄광은 페그마타이트 광상으로, 페그마타이트 광상의 주요 구성성분은 Amblygonite[(Li,Na)Al(PO4)(F,OH)], Eucryptite[LiAlSiO4], Lepidolite[K(Li,Al)3(Si,Al)4O10(F,OH)2, Petalite[Li2O․Al2O3․8SiO2, LiAlSi4O10], Spodumene[Li2O․Al2O3․4SiO2, LiAlSi2O6] 광물들로 구성되며, 페그마타이트 광상으로부터 리튬의 회수는 호주, 브라질, 짐바브웨 등에서는 주로 노천채굴로 이루어지나 중국 및 캐나다는 갱내채굴로 이루어지고 있다. 상업적으로 채굴 가능한 리튬은 410만톤 정도로 향후 7 ~ 8년 내에 고갈될 전망이다. 한편 남미의 리튬은 거의 대부분 염수 추출인데 고지대 증발암을 근원으로 전 세계 리튬 생산량의 72%가 염수에서 추출한 것이다. 리튬 추출기술은 추출원에 따라 (1) 광석, (2) 염호, (3) Clay, 및 (4) 리튬 함유 폐자원에서 추출하는 기술로 분류할 수 있다. 추출기술별로 다양한 법을 사용하지만 전반적인 화학적 메카니즘은 광석 추출기술과 염호추출기술이 대표적이다. 광석추출기술의 경우 광맥에서 채굴한 원석을 부유선광하고 석영질, 운모질을 제거하여 Li2O 1.5% 품위의 광석을 5 - 6%로 높인다. 광석분은 화학공장으로 운반되어 사일로에 저장되며, 다음으로 회전로에서 1,100℃로 가열한 후 냉각 킬른을 지나 배출된다. 이 공정에서 스포듀민은 비수용성 α형에서 수용성 β형으로 변화된다. α형은 황산에 의해 분해되는 것이 적으나 β형은 쉽게 황산리튬으로 변된다. 또한 β형은 α형보다도 부서지기 쉬워 볼밀(Ball Mill)로 미분쇄시킨다. 스포듀민 대신으로 페탈라이트를 쓰면 1,100℃에서 페탈라이트가 β스포듀민과 Free Silica로 변화한다. Li2O·Al2O3·8SiO2 → Li2O·Al2O3·4SiO2 + 4SiO2 (1) β-스포듀민의 미분에 황산을 이론양보다 약간 많이 혼합하고 황산배소로에서 약 250℃로 가열하면 β-스포듀민 중의 Li2O만이 황산리튬으로 변화한다. Li2O·Al2O3·4SiO2 + H2SO4 → Li2SO4 + Al2O3·4SiO2 + H2O↑ (2) 물과 섞어 황산리튬용액으로 한 후 과잉의 황산은 석회로 중화시켜 생긴 석고는 알루미나, 실리카와 같이 여과 제거한다. 이를 정액한 후 소다회의 포화용액과 반응시키면 탄산리튬이 침전된다. Li2SO4 + Na2CO3 → Li2CO3↓ + Na2SO4 (3) 한편, 염호 중의 리튬은 통상 염화리튬의 형태로 함유되어 있으며, 리튬함유량 평균이 300 ppm (200-1,700)으로 태양열을 이용해 증발 못에서 0.6%(20배)로 농축한다. 증발 도중에 암염과 NaCl과 KCl의 복합물이 정출된 다음 석회를 첨가해 마그네슘이 수산화물로 침전된다. 최종적으로 소다회를 넣어 리튬을 탄산리튬으로 회수한다. 본고에서는 리튬 추출공정별 메카니즘을 비교 평가를 통해 석탄회로부터 리튬을 추출하는 공정을 최적화
        2.
        2013.11 서비스 종료(열람 제한)
        석탄은 풍부한 매장량, 저렴한 가격, 공급원의 안정성 등으로 인해 전 세계적으로 화력발전소의 근간이 되는 원료로서 사용되고 있으며, 2012년 6월 기준으로 전력설비 79,552 MW 중 석탄화력은 24,534 MW, 30.8%를 차지하고 있다. 국내의 경우 제 5차 장기전력수급계획(1999 ~ 2015년) 및 제 6차 장기전력수급계획(2013 ~ 2027년)에 의하면 현재 보다 석탄화력발전은 1,580만kW 추가로 건설될 예정이며, 석탄화력이 전력원으로서의 비중은 증대되고 있다. 이에 따라 석탄회 발생량이 표 1과 같이 2012년 년간 870만톤에서 2020년에는 년간 1,660만톤으로 증가할 것으로 예상되고 있다. 그러나 2012년 말 현재 석탄회 재활용율은 70%에 그치고 있으며, 향후 석탄회 발생량이 지속적으로 증가 시 수요처 확보 및 재활용 다각화 방안 도출이 필요한 실정이다. 한편, 석탄화력발전소에서 발생하는 석탄회 중 희유금속의 모니터링 결과, 표 2와 같이 초부가 가치금속인 희유금속을 다량 함유하고 있으며, 희유금속 중 리튬의 함량이 가장 많고 경제성이 있는 것으로 확인되고 있다. 세계적으로 리튬 추출원인 바닷물에는 리튬이 170 ~ 200 ppb정도의 농도로 존재하는 반면 석탄회에는 해수 보다 1,000배 이상 높은 200 ~ 300 ppm정도로 농축되어 있다. 따라서 국내매장량이 없고 전량 수입에 의존하고 있는 리튬, 니켈 등 희유금속을 석탄회로부터 추출하는 기술 개발이 필요한 실정이다. 본 연구에서는 장기적으로 리튬자원의 고갈을 대비하여, 석탄화력발전소별 발생하는 석탄회, 바닥회, 매립회, 미립장 상등수에 함유되어 있는 리튬 농도를 비교, 분석하였다.
        3.
        2013.11 서비스 종료(열람 제한)
        우리나라는 해양투기제도 시행 첫 해인 1988년에 55만톤의 폐기물을 해양 투기한 이래로 2011년까지 총 1억 2천만톤 이상의 폐기물을 대한민국 EEZ 경계에 위치한 3개의 지정해역에 투기하였다. 그러나 2011년 말 전체 해양투기량의 약 절반을 차지하던 하수오니 및 가축분뇨의 해양투기를 2012년부터 금지시키고 2013년도부터는 2012년도 전체 투기량의 절반을 차지하고 있는 음폐수의 해양투기를 금지하기로 이미 법제화한 바 있다. 이에 따라 국내 축산농가를 중심으로 연간 약 4700만톤(‘10년 기준) 대량으로 발생하고 있는 축산분뇨의 처리방안에 대한 다양한 방안이 검토 및 연구되고 있다. 이러한 축산분뇨 처리 방안 중 하나로 축분에 한 연료화 검토가 진행 중이며, 현재까지는 주로 소형의 보일러 연료로 활용이 대부분이나 최근 화석연료인 석탄을 대량으로 소비하며 이산화탄소 대량 배출원의 하나인 석탄화력발전소에 혼합연료로 활용하는 방안이 검토 중에 있다. 축분을 석탄화력발전소의 혼합연료로 사용할 경우 폐기물인 축분의 대용량 처리가 가능하고, 또한 향후 축분연료가 대용량 발전소의 연료로 고시될 경우 발전회사의 RPS(신재생에너지공급의무제; Renewable Portfolio Standard) 달성에 기여할 수 있기 때문에 축분연료의 발전용 석탄과의 혼합연소 가능성에 대한 관심이 크게 증가하고 있는 실정이다. 본 연구에서는 국내화력발전소의 RPS 대응방안의 일환으로 검토 중인 축분연료의 석탄과의 혼합비율에 따른 연소특성 평가를 통해 축산폐기물의 연료화 가능성을 검토하였다.