검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The association between the COMT rs4680 (G>A, Val-158-Met) polymorphism and the risk of fibromyalgia has been investigated in previous studies, but the results are controversial. Therefore, a meta-analysis has been performed to confirm the association between COMT rs4680 (G>A, Val-158-Met) polymorphism and the risk of fibromyalgia in this study. Our study includes eleven case-control studies with 2,909 individuals comprised of 1,365 fibromyalgia patients and 1,544 control subjects. The regression analysis was performed using the random effects model or the fixed effects model and OR with the corresponding 95 % CI was calculated for the allele, recessive, dominant, over-dominant, co-dominant 1, and co-dominant 2 model. No statistical significant associations were observed between COMT rs4680 (G>A, Val-158-Met) polymorphism and risk of fibromyalgia in allele model (P-value = 1.00), recessive model (P-value = 1.00), dominant model (P-value = 0.54), co-dominant 1 model (P-value = 1.00) and co-dominant 2 model (P-value = 1.00). In conclusion, our meta-analysis showed that the COMT rs4680(G>A, Val-158-Met) polymorphism might not be genetic risk factor for the fibromyalgia.
        4,000원
        2.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcumalongae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid βprotein (Aβ) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to10µM Aβ (25-35) for 36h induced neuronal apoptotic death. At 1-50㎍/㎖, HS0608 inhibited neuronal death, elevation of intra-cellular calcium concentration ([Ca2+]i), and generation of reactive oxygen species (ROS) induced by Aβ (25-35) in primary cul-tures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol Aβ (25-35) wasinhibited by chronic treatment with HS0608 (25, 50 and 100㎎/㎏, p.o. for 7 days) as measured by a passive avoidance test. Fromthese results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against Aβ (25-35)-inducedneurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer’s disease.
        3.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        Vitis amurensis (VA; Vitaceae) has long been used in oriental herbal medicine. It has been reported that roots and seeds of VA have anti-inflammatory and antioxidant effects. In the present study, the protective effect of ethanol extract from stems and leaves of VA on hydrogen peroxide (H2O2) (100 μm)-induced neuronal cell damage was examined in primary cultured rat cortical neurons. VA (10-100 μg/ml) concentration-dependently inhibited H2O2-induced apoptotic neuronal cell death measured by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. VA inhibited H2O2-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and generation of reactive oxygen species (ROS), which were measured by fluorescent dyes. Pretreatment of VA also prevented glutamate release into medium induced by 100 μm H2O2, which was measured by HPLC. These results suggest that VA showed a neuroprotective effect on H2O2-induced neuronal cell death by interfering with H2O2-induced elevation of [Ca2+]i, glutamate release, and ROS generation. This has a significant meaning of finding a new pharmacological activity of stems and leaves of VA in the CNS.
        4.
        2008.12 KCI 등재 서비스 종료(열람 제한)
        Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid β protein (Aβ) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited 10 μM Aβ (25-35)-induced neuronal cell death at 30 and 50 μg/ml, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by 10 μM Aβ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents Aβ (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]i, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.
        5.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide (H2O2)-induced neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 μM H2O2 caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to 50μg/ml, concentration-dependently prevented the H2O2-induced neuronal apoptotic death. CS (50μg/ml) significantly inhibited H2O2-induced elevation of the cytosolic Ca2+ concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and 50μg/ml) inhibited glutamate release and generation of reactive oxygen species (ROS) induced by 100μM H2O2. These results suggest that CS may mitigate the H2O2-induced neurotoxiciy by interfering with the increase of [Ca2+]c, and then inhibiting glutamate release and generation of ROS in cultured neurons.