The performance of the new aerobic digestion system combined with inorganic sludge separation unit and sludge solubilization unit, CaviTec II, is evaluated. Anaerobic digester effluent sludge is used for feed sludge of CaviTec II system. By addition of CaviTec II, the amount of cake generated is reduced by 27%, and the soluble nitrogen is reduced by 92%.
The performance of inorganic sludge separation system is evaluated. Anaerobic digester effluent sludge is used for feed sludge of this system and hydrocyclone is used for inorganic sludge separation. For phosphorus removal and recovery MgCl2 is pumped into MAP growth tank, a component of inorganic sludge separation system. Using this system inorganic sludge which contained less than 40 % of organic matter can be discharged stably and the maximum amount of separated inorganic sludge is 13.4 % of influent sludge based on dry solid. The amount of phosphorus recovered as MAP(as P) is 16.7 % to influent T-P.
One-dimensional flux theory (1DFT) is conventionally used for design of secondary clarifier of wastewater treatment plant. However, the 1DFT cannot describe turbulence, density current, shape parameters of the clarifier. In this study, we optimized the configurations of influent guide baffle and effluent baffle through the simulation using computational fluid dynamics (CFD) and its verification by particle image velocity (PIV) test. The energy dissipating inlet (EDI) without influent guide baffle (0°) showed the best efficiency for minimizing downward velocity under the center well of the clarifier. The lowest velocity distribution around the effluent weir region could be obtained with the McKinney baffle (EB-2). The performances of the influent and effluent baffles were clearly verified by PIV test results.