(hfac)Cu(1, 5-DMCOD)(1, 1, 1, 5, 5, 5-Hexafluoro-2, 4-pentanedionato Cu(I) 1, 5-dimethyl-cyclooctadine) 전구체와 He 운반기체를 이용하여 MOCVD(Metal Organic Chemical Vapor Deposition) 방법으로 Cu 박막을 형성하였으며, He 운반기체와 함께 H2 gas 및 H(hfac) Ligand의 첨가가 Cu 박막 형성에 미치는 영향에 대하여 조사하였다. He운반기체만을 사용한 경우, Cu 박막의 증착율은 기판온도 180~230˚C에서 20~125Å/min 정도로 낮은 값을 보였으며, 특히 기판온도 190˚C에서는 매우 얇은 두께 (700Å)이면서 낮은 비저항(2.8μΩcm)을 갖는 Cu 박막이 형성됨을 알 수 있었다 He 운반기체와 함께 환원가스(H2) 및 화학첨가제 (H (hfac) ligand)의 첨가 실험에서는 낮은 기판온도 (180~190˚C) 구간에서 현저하게 증착율이 증가하였으며 얇은 두께 (~500Å)의 Cu 박막이 낮은 비저항(3.6~2.86μΩcm)을 갖는 것으로 나타났다. 또한 얇은 두께의 MOCVD Cu박막들의 표면 반사도(reflectance)는 300˚C에서 열처리한 sputter Cu의 반사도에 근접하는 우수한 surface morphology를 보였다 결국, (hfac)Cu(1,6-DMCOD) 전구체를 이용하여 얻어진 MOCVD Cu박막은 얇은 두께에서 낮은 비저항을 갖는 우수한 막질을 보였으며, Electrochemical deposition공정에서 conformal seed layer로써의 적용이 가능할 것으로 기대된다.
(hfac) Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cyclooctadine) 증착원을 이용하여 MOCVD(metal organic chemical vapor deposition)로 Cu 박막을 형성시키고, MOCVD에 의한 TiN 기판 변화가 Cu 증착에 미치는 영향을 조사하였다. 공기 중에 노출시킨 기판은 MOCVD 에 의한 Cu 핵생성 및 초기성장에 영향을 미쳐 입자크기가 작고, 입자간의 연결성이 떨어졌으며, in-situ MOCVD Cu의 경우는 입자크기가 크고, 입자간의 연결성이 우수하여 1900Å 이상의 두께에서는 2.0μΩ-cm 정도의 낮은 비저항을 유지하였다. 또한 접착력에서는 in-situ MOCVD TiN 의 경우가 보다 우수하였다. 이와 같은 결과를 토대로 MOCVD Cu 성장단계를 제시하였다.