검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        3.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Floating PV generation system, renewable energy power plant, is able to overcome the disadvantages of ground PV generation system and improve generating efficiency. The frame structural system is an established technology among a diversity of structural technologies which has been developed for related fields. In this paper, the both structural safety and characteristics of floating PV generation structures depend on the different placement angle of solar module are investigated to improve the commercial viability, the structural safety, and characteristics of floating PV generation structures. In addition, for the estimation of structural safety, FE analyses are conducted. From the results, the lower placement angle of solar module improves the structural safety of floating PV generation system.
        3,000원
        4.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bridge inspection structures are the structure which is installed on the piers, abutments, and copings for the inspection and maintenance of substructure. In this study, the structural performance of the bridge inspection structures using aluminum members manufactured by extrusion process is evaluated. The bridge inspection structures can be installed regardless of the shape of concrete surface through the simple cutting process. The structural performance of bridge inspection structures is evaluated using FE analysis. Moreover, experimental studies are conducted for the estimation of the structural safety of the members for the design load.
        4,000원
        5.
        2016.04 구독 인증기관·개인회원 무료
        Generally, antiseptic synthetic woods are used in septic environment because of their durability and relatively fine view. However, they have problems such as a failure of connection between the members under the septic conditions. In this study we investigate a fiber reinforced polyurethane foothold to be used in the wet environment to replace the synthetic wood. The fiber reinforced polyurethane foothold is consist of 2 different layer of materials. First layer is a glass fiber reinforced polymeric plastics (GFRP) which is located at outer surface of the foothold. This GFRP outer layers carry most parts of load. Second layer is a polyurethane layer which transfers the load to each outer layer. Flexural tests for this foothold are conducted. From the flexural tests it is confirmed that the structural performance of foothold test specimen with different number of GFRP layers and density of the polyurethane.
        6.
        2015.04 구독 인증기관 무료, 개인회원 유료
        GFRP (glass fiber reinforced polymeric plastic) composite members are superior construction materials because they have higher specific strength and stiffness than steel and concretes. In addition, they also have high resistance to chemical corrosion. However, in many existing researches it reported that GFRP members have less resistance to ultra-violet ray (UV-ray), so they may cause critical structural problems due to changes of mechanical properties when the material is long-term exposed under UV-ray. In this study, we investigated whether these reports are reliable through two processes. First, we reviewed existing researches on the FRP members’s resistance to UV-ray, and then we conducted tensile strength test for GFRP sample exposed to UV-ray for 30 months (900 days). These two processes showed that mechanical properties of GFRP members do not change under long-term UV-ray exposure and they have enough resistance to UV-ray.
        3,000원
        7.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.
        4,000원
        8.
        2014.04 구독 인증기관·개인회원 무료
        Pultruded FRP can be regarded as an orthotropic material due to its manufacturing process that pull-out fibers impregnated with polymeric resin, which is suitable to produce structural member with unlimited lengths of reinforced polymer structural shapes with a various shape of cross-section. However, fiber distribution in the cross-section is not uniform because of the characteristics of pultrusion process. Therefore, random fiber distribution causes the difference of the modulus of elasticity throughout the cross-section. In this paper, closed-form local buckling analysis is conducted on the pultruded FRP I-shape compression members. The mechanical properties used to analytical investigations are obtained from the coupon test. The coupon test specimens are taken from the pultruded FRP I-shape member. Moreover, the local buckling tests of pultruded FRP I-shape members are conducted and test results are compared with the analytical results.
        9.
        2014.04 구독 인증기관·개인회원 무료
        The floating PV generation structure installed on the surface of water has been recently issued as a representative items for the low carbon and green growth campaign. Moreover, the studies and developments for the structure and construction improvements of floating PV generation structure have been in progress. For example, in the previous research, the floating PV generation structure consisted of pultruded FRP and SMC FRP members is suggested. In this study, we conduct the analytical and experimental studies for estimating the structural characteristics of SMC FRP vertical members. From the analytical and experimental results, it is found that SMC FRP vertical members used for floating PV generation structure have sufficient structural safety and stability.
        10.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.
        4,000원
        11.
        2013.04 구독 인증기관·개인회원 무료
        Carbon fiber reinforced polymeric plastic (CFRP) can be used for the deteriorated reinforced concrete members. CFRP reinforcement method, which is one of the reinforcement methods, can improve the strength and durability of reinforced concrete member. CFRP reinforcement method has been proved that it has sufficient effect on the flexural strengthening of reinforced concrete flexural member through numerous previous researches. In this paper, we present the analytical result of investigation pertaining to the CFRP reinforcing effect on the singly reinforced and doubly reinforced rectangular flexural members and T-shape singly reinforced flexural member. The analytical study is performed according to the code by ACI Committee 440 and previous research results.
        12.
        2013.04 구독 인증기관·개인회원 무료
        In this study, we conduct the economical analysis about the floating tracking PV generation structure manufactured by steel, aluminum, and GFRP (glass fiber reinforced polymeric plastic) structural member. The structural safety of floating PV generation structure has been proved through numerous previous researches. Moreover, the generating efficiency of tracking PV generation system can be more larger than immobile system. In this study, structural analysis using the FEM method has been performed to establish the safety of the floating tracking PV generation structure and commercial viability evaluation has been performed through the cost of materials.
        13.
        2014.04 서비스 종료(열람 제한)
        In this paper, the structural characteristics of the tracking-type floating PV generation system are presented. Moreover, the structural safety of each tracking-type floating PV generation system is estimated from the analytical results obtained by the finite element analyses.
        14.
        2014.04 서비스 종료(열람 제한)
        The floating PV generation system is consisted of unit structures linked by the hinge type connection because the effect of bending moment in the structural system loaded due to the unstable movement of water surface can be minimized. In this paper, the investigation and development process of floating PV generation unit structure is presented.
        15.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.
        16.
        2012.11 서비스 종료(열람 제한)
        In this paper, we present the results of investigations pertaining to the structural behavior of egg-shaped pipe buried underground. Mechanical properties of pvc sample taken from the egg-shaped pipe are tested according to KS M 3006. Test results are used in the finite element simulation for the structural behavior of the egg-shaped pvc pipe buried underground. Maximum stress obtained at the pipe is compared with the maximum strength of pvc pipe material. It was found that the egg-shaped pvc pipe buried underground is safe.