검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Inonotus obliquus is a traditional medicine mushroom that was developed from traditional medicine originating in ancient. It has been applied for cancer or immunotherapy,but its effect on pulmonary tuberculosis is not reported. Therefore, we measured the pulmonary tuberculosis therapeutic effect of methyl alcohol extract from MGIT 960 system with fluorescent indicator. Inonotus obliquus extract showed 14 day more inhibitory activity than the positive control. In addition, the anti-pulmonary tuberculosis activity of Inonotus obliquus was 50㎛. These results suggest that Inonotus obliquus methyl alcohol extracts could contribute to inhibition of pulmonary tuberculosis.
        3,000원
        2.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from 100 μm to 1000 μm, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the AgNO3 solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of AgNO3 was used. With an increased amount of AgNO3 and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of AgNO3 was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of AgNO3.
        4,000원
        3.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Multilayer Poly methyl methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates were fabricated using electrospinning and in vitro investigations were carried out for pre-clinical biocompatibility studies. The initial cellular cytotoxicity of the methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using fibroblast-like L-929 cells. Cellular adhesion and differentiation studies were carried out using osteoblast-like MG-63 cells. As simulated body fluid (SBF) contains the same ionic concentration of body fluid and any bioactive material tends to deposit bone-like apatite on the samples surfaces into the SBF, in vitro bioactivity of the multilayer bone plates were investigated using SBF. We also studied the internal organization and tensile strength of the multilayer PMMA/PVA bone plates using micro-computed topography (μ-CT) and universal testing instrument (UTI, Korea) respectively. The cellular cytotoxicity study with MTT confirmed that the cellular viability was 78 to 90% which indicates good cyto-compatibility. Scanning electron microscopic findings revealed a good attachment and adhesion phenomenon of MG-63 cells onto the surfaces of the samples. Cellular differentiation studies also showed that osteogenic differentiation was switched on in a timely manner and affirmed along with that of the control group. Bone-like apatite formation on the surfaces was confirmed within 14 days of SBF incubation. Initial organizations of the multilayer PMMA/PVA bone plates were characterized as dense and uniform. The tensile strength of the post-pressing electronspun mat was higher than that of the pre-electronspun mat. These results suggest that a multilayer PMMA/PVA bone plate system is biocompatible, bioactive and a very good alternative bone plate system.
        4,000원
        4.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p< 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p< 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.
        4,000원
        5.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydroxyapatite (HAp) and biphasic calcium phosphate (BCP) nano powders were synthesized using the microwave-assisted synthesis process dependent on pH and microwave irradiation time. The average size of a powder was less than 100 nm in diameter. Through in-vitro cytotoxicity tests by an extract dilution method, the HAp and BCP nano powders have shown to be cytocompatible for L-929 fibroblast cells, osteoblastlike MG-63 cells and osteoclast-like Raw 264.7 cells. The activation of osteoblast was estimated by alkaline phosphatase (ALP) activity. When the HAp and BCP were treated to MG-63 cells, alkaline phosphatase activities increased on day 3, compared with those of the untreated cells. Also, the collagen fibers increased when the HAp and BCP powders suspension were treated to MG-63 cells, compared to those of the untreated cells. Quantitative alizarin red S mineralization assays showed a trend toward increasing mineralization in osteoblast cultured with powder suspension. In conclusion, hydroxyapatite and biphasic calcium phosphate appeared to be a bone graft substitute material with optimal biocompatibility and could be further applied to clinical use as an artificial bone graft substitute.
        4,000원