검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.10 구독 인증기관·개인회원 무료
        도로 결빙이란 도로 표면에 형성된 얼음층으로 도로 결빙으로 인한 교통사고의 치사율은 결빙이 원인이 아닌 교통사고의 치사율과 비교하여 1.5배 높은 수치인 2.3으로 나타났다. 현재 국토교통부에서는 결빙사고 취약구간을 선정하고 관리하기 위하여 결빙 취약구간 평가기준표를 제시하였다. 그러나 도로 결빙은 노면 온도와 수분 공급에 따라 형성되며 기온, 구름량, 풍속, 풍향, 상대습도, 강수량 등 의 기상인자들이 복합적으로 작용하여 발생하며, 기존의 평가 기준은 이와 같은 인자들을 충분히 반영하지 못하여 결빙 형성을 예측 하고 평가하는 능력이 부족하다고 판단된다. 따라서 본 연구는 결빙 교통사고 데이터의 통계적인 분석을 통하여 결빙이 형성되는 기 상 조건을 구체화하고 결빙사고 및 결빙 형성을 예측하기 위한 기상학적 기준을 마련하는 것을 목적으로 진행되었다. 2018년 1월 1 일~2024년3월 15일 동안 발생한 결빙 사고와 사고 발생 당시 및 이전 6시간동안의 기상 데이터를 분석 데이터로 사용하였다. 이때, 역거리 가중법, 기온감률 등 공간보간기법을 적용하였다. 이후, 박스도표, 히스토그램, 경험적 누적분포함수 등의 통계분석을 적용하여 결빙사고의 기상 분포 특성을 확인하였다. 최종적으로 결빙사고의 몬테카를로 시뮬레이션을 활용하여 기온 및 습도에 따른 결빙사고 의 발생 확률을 계산하였다. 이와 같은 연구 결과는 결빙 형성을 예측하는 기온 및 습도의 기준점으로 제시할 수 있으며 더 나아가, 추후 결빙사고 예방 및 예보의 기준으로 활용이 가능할 것으로 기대된다.
        2.
        2024.03 구독 인증기관·개인회원 무료
        겨울철 국내 도로 결빙으로 인한 교통사고가 증가하는 추세를 보이고 있으며 2018년~2022년까지 총 4,609건의 결빙 교통사고가 발 생하였다. 결빙 교통사고의 치사율은 2.3으로 일반적인 교통사고와 비교하여 높은 치사율을 보이며 최근 5년(2018~2022)동안 결빙 교 통사고로 인하여 107명이 사망자와 7,728명의 부상자가 발생하였다. 현재 국토교통부에서 제시한 결빙 취약구간 평가기준표에 따라 결 빙 위험 구간을 지정하고 있으나, 해당 기준은 결빙의 주요 요인으로 고려되는 기상조건을 충분히 반영하지 못하고 있다. 도로 결빙은 노면온도가 0℃ 이하이며 노면에 수분이 공급될 때 형성되며 기온, 구름량, 풍속, 풍향, 상대습도, 강수량 등의 기상인자들이 복합적으 로 작용하여 결빙이 발생한다는 점을 고려하였을 때, 기상 특성은 도로 결빙의 주요 인자로 판단된다. 따라서 국내 결빙 취약구간 평 가기준의 개선이 필요하며 본 연구의 목적은 국내 결빙 교통사고 데이터를 분석하고 결빙이 형성되는 기상 조건을 구체화하는 것이다. 분석을 위한 데이터로 2018년~2022년까지 5년동안 발생한 결빙사고 사례와 기상청 방재기상관측소(AWS)에서 제공하는 기상 데이터 를 적용하였다. 이후, 박스도표, 확률밀도함수 등의 통계분석을 적용하여 결빙 형성 기상 조건을 구체화하였다. 이를 통하여 기존 결빙 취약구간 평가기준의 기상학적 개선 방향성을 제시할 수 있으며 더 나아가 도로 결빙 예측 로직 개발을 기대할 수 있다.
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Economic indicators are a factor that affects air cargo volume. This study analyzes the different factors affecting air cargo volume by each Chinese cities according to the main characteristics. The purpose of this study is to help companies related to China, airlines, and other stakeholders predict and prepare for the fluctuations in air cargo volume and make optimal decisions. To this end, 20 economic data were used, and the entire data was reduced to 5 dimensions through factor analysis to build a dataset necessary and evaluated the influencing factors by multi regression. The result shows that Macro-Economic Indicators, Production/Service indicators are significant for every cities and Chinese manufacture/Customer indicators, Korean manufacture/Oil Price indicators, Trade/Current indicators are significant for each other city. All adjusted R2 values are high enough to explain our model and the result showed excellent performance in terms of analyzing the different factors which affects air cargo volume. If companies that are currently doing business with China can identify factors affecting China's cargo volume, they can be flexible in response to changes in plans such as plans to enter China, production plans and inventory management, and marketing strategies, which can be of great help in terms of corporate operations.
        4,000원