The micro-structural changes, strength characteristics, and micro-fractural behaviors at the joint interface between a Sn-4.0wt%Ag-0.5wt%Cu solder ball and UBM treated by isothermal aging are reported. From the reflow process for the joint interface, a small amount of intermetallic compound was formed. With an increase in the isothermal aging time, the type and amount of the intermetallic compound changed. The interface without an isothermal treatment showed a ductile fracture. However, with an increase in the aging time, a brittle fracture occurred on the interface due mainly to the increase in the size of the intermetallic compounds and voids. As a result, a drastic degradation in the shear strength was observed. From a microshear test by a scanning electron microscope, the generation of micro-cracks was initiated from the voids at the joint interface. They propagated along the same interface, resulting in coalescence with neighboring cracks into larger cracks. With an increase in the aging time, the generation of the micro-structural cracks was enhanced and the degree of propagation also accelerated.
석출경화형 6061Al기지합금과 SiC입자크기를 0.7μm 및 7.0μm로 변화시켜 강화한 SiCp/6061Al 합금복합재료의 시효 거동을 경도측정, DSC 시험 및 TEM관찰을 통하여 조사하였다. 170˚C에서 등온시효시 6061Al기지합금에 비하여 복합화한 0.7μmSiCp/6061Al합금복합재료 및 7.0μmSiCP/6061Al합금복합재료에서 최고경도에 도달하는 시간이 짧았으며, 또한 강화재의 크기가 큰 7.0μmSiCp/6061Al합금복합재료에서 시효촉진이 보다 크게 나타났다. 이것은 복합화 및 SiC입자크기 증가에 따른 전위 밀도 상승에 기인한다. 6061Al기지합금 및 복합재료에서 최고시효처리시의 주강화상은 봉상의 중간상 β(Mg2Si)이며,β상 생성의 활성화에너지는 복합화 및 SiG입자크기의 증가에 따라 감소되었다
Fe-30Ni-0.35C 합금과 몇가지 저융점 순금속의 상변태에 미치는 압력의 영향에 대하여 PDSC를 이용하여 조사하였다. Fe-30Ni-0.35C 합금의 오스폼트 마르텐사이트 및 마르폼드 마르텐사이트 오스테나이트로 역변태시 압력이 1 기압에서 60기압으로 증가하에 따라. As점이 약 2~4˚C 저하하며, 이것은 상전이시의 체적변화가 음의 값이 되기 때문이다. 또한 Af 점은 압력이 증가함에 따라 변함없이 일정하거나 매우 미소한 상승을 나타내는데, 이것은 압력이 증가할수록 탄화물의 석출이 촉진되기 때문이다. Fe-30Ni-0.35C 합금의 오스폼드 마르텐사이트의 역변태시 엔탈피변화는 압력이 1 기압에서 60기압으로 상승함에 따라 10~14J/g 증가한다. 순금속 Se, Sn, Pb, Zn, Te 등의 용융점은 압력이 1기압에서 60기압으로 증가함에 따라 매우 완만하게 상승하며, 용융시의 엔탈피변화는 압력의 증가에 따라 거의 변화가 없거나 미소 증가를 나타낸다.
SiCp/6061AI 복합재료의 파괴인성을 평가하기 위하여 정적파괴인성에 대해서는 복수시험편법을, 동적파괴인성시험에 대해서는 stop block법을 실시하였다. 주균열은 예비균열의 선단에서 시험편두께방향 전역에 걸쳐서 일시에 발생하는 것이 아니고, 균열발생의 초기단계에서 국부적으로 형성된 균열이 시험편두께방향으로의 균열의 확장을 완료한 후 주균열로 이행해 간다. 정적 및 동적시험에서 컴플라이언스변화율법에 의해 검출된 균열발생점은 균열확장의 완료점과 거의 일치하고 있기 때문에 본 재료의 파괴인성 결정에 유효하다. 본 재료에서 동적파괴인성치는 정적파괴인성치보다 크게 나타났다. 이것은 동적충격시 입자파괴에 의한 에너지의 흡수.분산효과와 균열진전경로의 큰 편향에 기인한다고 생각된다.
SiCp/AI 합금 복합재료에 있어서 동적 및 정적파괴인성시험을 실시하고 파괴거동에 미치는 부하조건의 영향을 검토하였다. 동적파괴인성시험은 CAI시스템을 이용하여 1.5m/sec의 부하속도로 실시하였고, 정적파괴인성시험은 만능시험기를 이용하여 0.3 mm/min의 부하속도로 실시하였다. 또한 파괴과정을 명확히 해석하기 위하여 동적부하조건에 대해서는 stop block법을, 정적부하조건에 대해서는 복수시험편법을 이용하였다. 균열의 발생 및 성장은 부하조건에 의해 크게 영향을 받으며, 변위량에 대한 균열의 발생은 정적부하조건에서 더 빨리 일어나고, 균열의 성장은 동적부하조건에서 더 급격하다. 또한 부하조건은 파괴의 형태에도 크게 영향을 미치며, 동적부하조건하에서는 정적부하조건하에 비하여 균열이 입자부분(입자의 파단 또는 박리)을통과해 가는 경향이 크고 비교적 많은 편향을 반복해서 진행해 가지 때문에 파괴인성치도 크다.다.