검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2010.04 구독 인증기관 무료, 개인회원 유료
        유속의 변화에 따른 오일펜스 만곡부 후면의 속도장과 압력장, 와도 및 난류 강도를 계측한 PIV 실험의 결과 유속이 증가함에 따라 유동 경계역의 후면부에서의 흐름 방향이 전면부의 흐름방향에 가까워지는 현상이 나타났고, 압력 분포의 양상이 달라졌으며 난류도 더욱 불규 칙적인 형태로 나타났다. PIV 실험과 동일 조건으로 수행한 CFD 해석 결과, 후류의 유동 패턴이 0.3m/s이하의 저속인 경우는 PIV 실험 결과 와 유사하게 나타났으나, 유속이 0.4m/s일 때는 오일펜스 자체의 유연성으로 인해 다소 차이가 나타났고, 오일펜스 하단의 압력차로 인한 불규 칙한 난류가 수면까지 영향을 주는 것 같았다.
        4,000원
        2.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate the optimal shapes and arrangements of sinkers attached to net cages to prevent their deformation in a current. A series of model experiments were conducted in a circulating water channel, using 5 different types of sinker(high-weighted ball, low-weighted ball, columntype, egg-shaped and iron bar-framed) and 2 types of square net cage constructed from both Nylon Raschel netting and Nylon knotted netting, on a 1/20th scale. The deflection of the model nets against the flow was smallest with the iron bar-framed weight compared to the other four types of sinker. It was expected that the optimal shapes of sinkers would be either the ball or egg-shape; however, iron bar-framed weight actually had larger drag forces. The dispersed deployment of sinkers on the bottom frames of model net cages performed better with relatively slow flows, while the concentrated deployment at 4 corners functioned better with relatively fast flows, in preventing the nets from becoming severely deformed. The deformation of the net cages was larger for the Nylon knotted netting than the Nylon Raschel netting. With respect to flow resistance, the Nylon Raschel netting, rather than the Nylon knotted netting, was more suitable for construction of net cages.
        4,600원
        3.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical modeling was used to evaluate the submerging characteristics of the submersible fish cage system operated by compressed air. The submerging characteristics calculated by numerical analysis as the cage was moved up and down were nearly identical to existing experiment results. Thus, the numerical model proposed in this study could be very useful in analyzing various parameters required for optimizing the design of a submersible fish cage system operated by compressed air.
        4,200원