전기탈이온 장치를 통한 니켈이온의 이동메커니즘이 이온교환섬유의 전기화학적 특성을 이용하여 조사되었다. 포러스 플러그 모델과 확장된 넌스트-플라크 식이 니켈이온의 이동 현상의 해석을 위해서 적용되었다. 적용된 모델을 통해 전기탈이온 시스템의 성능증가는 이온교환섬유를 통해 변화되는 이동도에 기인하는 것이 아니라, 이온교환매개체의 자체 전도도에 의해 일어나는 전류 유발 효과에 의한 것으로 나타났다. 또한, 최적의 전기탈이온 공정운전이 최소화된 전기적 재생영역하에서 일어남을 본 연구를 통해 제시되었다.
다수의 잠재적인 내분비계장애물질이 환경에 방출됨으로써 새로운 환경문제로 세계적 관심이 모아지고 있다. 이러한 물질들을 측정하고 감시하기 위한 고감도이며 신뢰성 있는 분석방법의 개발이 필수적이다. 이 연구에서는 기체크 로마토그래피 질량분석법과 액체크로마토그래피 질량분석법이 내분비계장애물질들의 분석을 위해 이용되었으며 두 가지 분석방법들이 DEHP, BBP, PCP, BPA에 대해 비교 및 평가되었다 그 결과 액체크로마토그래피 질량분석법이 더 낮은 검출 한계를 나타내는 것으로 조사되었다. 또한 액체크로마토그래피 질량분석법은 대부분의 순수한 분자들로서 내분비계장애물질들을 측정 가능함이 판명되었다. 이 연구에서는 음용수에서 내분비계장애물질들을 제거하는 방법으로 유기막과 세라믹막을 제시하였으며 십자류 나노여과 방식이 내분비계장애물질들을 100% 제거하는 것으로 조사되었고 분획분자량 250 나노여과는 내분비계장애물질을 제거함에 있어 효과적인 것으로 판명되었다. 나노여과, 고속한외여과, 저속한외여과의 투과플럭스와 물질전달계수와의 비는 0.67, 3.4, 그리고 0.44였으며 나노여과와 저속한외여과는 확산이 주요한 조건에서 운전되며 고속한외여과는 대류가 주요한 조건에서 운전된다. 더욱이, 확산이 주요한 나노여과와 저속한외여과에서 내분비계장애물질의 제거율이 높은 것으로 측정되었다. 한외여과에 의한 제거는 내분비계장애물질들의 분자량에 의존하는 것으로 조사되었으며 내분비계장애물질들은 확산이 주요한 수리동역학적 조건에서 제거됨이 판명되었다.
전기투석 공정에서 이온교환막 표면에 형성되는 스케일 영향을 조사하기 위해 장기간 동안 운전되었다. 탈염공정 동안, Ca2+과 SO42- 이온의 농도는 농축실에서 연속적으로 증가하였으며 양이온교환막(Neosepta CMX)표면에 침전이 발생하였다. 초기 스케일 형성동안, 공정성능과 막 특성의 변화는 농축실 염농도 증가에 기인하여 일어나는 양이온교환막의 하계전류밀도가 감소하는 것을 제외하곤 미미하였다. 공정운전이 진행됨에 따라 양이온교환막의 한계전류밀도는 물의 해리 현상이 진행되어 300;A/m2까지 감소하였다. 막 오염은 농축실에서 양이온교환막 표면에 형성된 스케일과 물의 해리현상에 의해 유발된다는 결론을 얻었으며, 이러한 스케일 형성은 CaSO4의 용해도에 의해 예측 가능한 것을 알 수 있었다.
최근 생물다양성 협약의 발효로 유전자원 사용에 제한이 있게 되면서 국내 재래종 유전자원에 대한 유전변이 평가를 통한 육종소재로 활용 가능한 유용유전자원 확보는 대단히 중요한 과제로 대두 되었다. 그 중 벼 육종에 있어서 도열병 저항성은 재배안전성 측면에서 가장 중요한 형질 중의 한가지로서 많이 연구 되었는데 효율적인 수단으로는 저항성이 증대된 신품종을 육종하는 것이 가장 효율적인 방법이라고 할 수 있다.
본 연구에서는 국내 재래종 벼 품종들에 대해 주요 도열병 저항성 유전자를 탐색 하고 재래종 벼의 유전적 특성을 분석하여 벼 품종육성의 기초자료로 제공하고자 수행하였다.
선행연구에서 보고된 도열병 유전자 정보를 이용하여 국내 재래종 벼를 대상으로 분석한 결과, 홍도, 홍사도, 사두초, 앵미, 효성재래종, 적선, 선, 한양조, 백곡나 등에서 Pi-b 저항성 유전자가 탐색 되었다. 추후 국내 재래종 유전자원은 병저항성 육성 소재로 활용 가능할 것으로 생각된다.