검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The live fire test has been playing a critical role in evaluating the goals-to-meet of the weapon systems which utilize the power of explosives. As such, the successful development of the test systems therein is quite important. The test systems development covers that of ranges and facilities including system-level key components such as mission control, instrumentation or observation, safety control, electric power, launch pad, and so on. In addition, proper operational guidelines are needed with well-trained test and operation personnel. The emerging weapon systems to be deployed in future battle field would thus have to be more precise and dynamic, smarter, thereby requiring more elaboration. Furthermore, the safety consideration is becoming more serious due to the ever-increasing power of explosives. In such a situation, development of live fire test systems seems to be challenging. The objective of the paper is on how to incorporate the safety and other requirements in the development. To achieve the goal, an architectural approach is adopted by utilizing both the system components relationship and safety requirement when advanced instrumentation technology needs to be developed and deteriorated components of the range are replaced. As an evaluation method, it is studied how the level of maturity of the test systems development can be assessed particularly with the safety requirement considered. Based on the concepts of both systems engineering and SoS (System-of-Systems) engineering process, an enhanced model for the system readiness level is proposed by incorporating safety. The maturity model proposed would be helpful in assessing the maturity of safety-critical systems development whereas the costing model would provide a guide on how the reasonable test resource allocation plan can be made, which is based on the live fire test scenario of future complex weapon systems such as SoS.
        4,000원
        2.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.
        4,000원
        3.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."
        4,000원