검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the degradation characteristics and biodegradability of phenol, refractory organic matters, by injecting MgO and CaO-known to be catalyst materials for the ozonation process-into a Dielectric Barrier Discharge (DBD) plasma. MgO and CaO were injected at 0, 0.5, 1.0, and 2 g/L, and the pH was not adjusted separately to examine the optimal injection amounts of MgO and CaO. When MgO and CaO were injected, the phenol decomposition rate was increased, and the reaction time was found to decrease by 2.1 to 2.6 times. In addition, during CaO injection, intermediate products combined with Ca2+ to cause precipitation, which increased the COD (chemical oxygen demand) removal rate by approximately 2.4 times. The biodegradability of plasma treated water increased with increase in the phenol decomposition rate and increased as the amount of the generated intermediate products increased. The biodegradability was the highest in the plasma reaction with MgO injection as compared to when the DBD plasma pH was adjusted. Thus, it was found that a DBD plasma can degrade non-biodegradable phenols and increase biodegradability.
        4,000원
        2.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This objective of this study was to investigate the degradation characteristics of phenol, a refractory substance, by using a submerged dielectric barrier discharge (DBD) plasma reactor. To indirectly determine the concentration of active species produced in the DBD plasma, the dissolved ozone was measured. To investigate the phenol degradation characteristics, the phenol and chemical oxygen demand (COD) concentrations were evaluated based on pH and the discharge power. The dissolved ozone was measured based on the air flow rate and power discharged. The highest dissolved ozone concentration was recorded when the injected air flow rate was 5 L/min. At a discharge power of 40W as compared to 70W, the dissolved ozone was approximately 2.7 – 6.5 times higher. In regards to phenol degradation, the final degradation rate was highest at about 74.06%, when the initial pH was 10. At a discharged power of 40W, the rate of phenol decomposition was observed to be approximately 1.25 times higher compared to when the discharged power was 70W. It was established that the phenol degradation reaction was a primary reaction, and when the discharge power was 40W as opposed to 70W, the reaction rate constant(k) was approximately 1.72 times higher.
        4,000원