검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2013.09 구독 인증기관·개인회원 무료
        아스팔트 콘크리트 포장 파손 중 40cm-50cm 지름과 5cm-10cm 깊이를 갖는 움푹 파이는 형태의 포장 파손을 포트홀(pothole)이라고 한다. 포트홀 파손 발생 메커니즘은 아스팔트 혼합물에 수분이 침투하고, 아 스팔트 바인더와 골재의 점착력이 침투한 수분에 의하여 약화되어 발생한다. 따라서 아스팔트 콘크리트 포 장의 포트홀은 주로 장마 기간에 많이 발생하지만 최근 들어 지구 온난화의 영향으로 겨울철 강우 또는 강 설의 증가와 제설제의 영향으로 겨울과 봄에도 많이 발생하고 있다. 본 연구에서는 아스팔트 콘크리트 포장 에 발생한 포트홀 파손을 효율적으로 상온에서 보수할 수 있는 보수 재료에 대한 기본 물성 시험으로 마샬 시험을 수행하였으며, 시험에 적용된 보수 재료는 밀입도 아스팔트 콘크리트 포장용(공극률 4%, Type A)과 배수성 포장용(공극률 15%, Type A) 및 중간 단계의 공극(공극률 10%, Type C)을 갖고 있는 포장용으로 개발되었다. 목표 공극률 4% 혼합물(Type A)의 경우 안정도가 시험 장비의 재하하중 범위를 넘어 측정할 수 없었지만 세 가지 혼합물 모두 마샬시험 결과 모두 서울시의 마샬시험기준을 만족하는 것으로 나타났다.
        4.
        2014.02 서비스 종료(열람 제한)
        아스팔트 콘크리트 포장의 주요 파손 형태는 균열과 변형으로 나타나며, 균열은 다시 피로균열, 저온균열, 종방향 균열 및 시공이음부 균열로 구분할 수 있다. 이러한 균열을 통해 포장층으로 수분 유입이 가능하며, 포트홀과 같은 추가적인 포장 파손을 발생시키거나 균열의 진행 속도를 가속화 시킬 수 있다. 따라서 도로 포장의 유지관리 측면에서 적절한 시점에 균열의 유지보수를 수행한다면, 전단면 보수를 수행하지 않고도 포장의 수명을 연장 시킬 수 있다. 균열 보수 방법으로 아스팔트 바인더 또는 고무 계열의 재료를 사용하여 보수를 수행하지만 이러한 보수 재료들은 가열을 통한 작업 속도 및 소규모 균열에 대한 경제성이 낮다는 단점이 있다. 따라서 본 연구에서는 폴리머 개질 아스팔트 계열인 우레탄 개질 아스팔트 바인더를 통해 균열 보수를 상온에서 수행할 수 있는 재료를 개발하고자 도로 현장의 균열 파손부에 균열 보수 시험 시공을 수행하였다. 균열 보수는 서울과 경기도 수원 지역에 각 1개소씩 2개소에 대하여 2013년 4월에 시공하였으며, 7개월 공용 후 현장 점검 결과 일부 균열 실링 보수 부위에서 균열이 발생한 것을 확인 할 수 있었다. 현장에서 관찰된 실링 보수 재료의 균열은 우레탄 개질 아스팔트 바인더의 건조 수축보다 동절기 아스팔트 콘크리트 포장 표층의 수축에 의한 것으로 사료되며, 향후 온도 변화에 따른 수축 팽창에 관련된 성능 개선 및 현장 시공을 통해 추적조사를 수행 할 계획이다.
        5.
        2014.02 서비스 종료(열람 제한)
        아스팔트 콘크리트 포장 파손 중 40cm-50cm 지름과 5cm-10cm 깊이를 갖는 움푹 파이는 형태의 포장 파손을 포트홀(pothole)이라고 한다. 포트홀 파손 발생 메커니즘은 아스팔트 혼합물에 수분이 침투하고, 아스팔트 바인더와 골재의 점착력이 침투한 수분에 의하여 약화되어 발생한다. 따라서 아스팔트 콘크리트 포장의 포트홀은 주로 장마 기간에 많이 발생하지만 최근 들어 지구 온난화의 영향으로 겨울철 강우 또는 강설의 증가와 제설제의 영향으로 겨울과 봄에도 많이 발생하고 있다. 본 연구에서는 아스팔트 콘크리트 포장에 발생한 포트홀 파손을 효율적으로 상온에서 보수할 수 있는 보수 재료에 대하여 25℃에서 간접인장강도시험을 수행하고, 5회 동결융해 반복 후 간접인장강도시험을 수행하여 인장강도비(TSR, Tensile Strength Ratio)를 산정하였다. 이때 사용된 우레탄 개질 아스팔트 포트홀 보수재는 목표 공극률 4%대의 혼합물을 사용하였으며, 비교대상 상온 보수재는 사전 혼합된 형태로 사용되고 있는 기성 제품 2종류를 선정하였다. 각각의 포트홀 보수재는 양면 50회 다짐을 수행하여 공시체를 제작하였다. 동결융해 조건은 KS F 2398에 따라서 영하 18℃에서 16시간 방치한 후 60℃ 항온수조에서 24시간 담그는 것을 동결융해 1회로 보고 5회 반복한 후 간접인장강도시험을 수행하였다. 5회 동결융해 반복시험 후 인장강도비가 우레탄 개질 아스팔트 포트홀 보수재의 경우 35%이며, 비교 대상 상온 포트홀 보수재는 각각 67%와 66%로 나타났다. 우레탄 개질 아스팔트 보수재의 인장강도비가 다른 두 혼합물보다 50%정도 인장강도비가 작은 것으로 나타났지만 5회 동결융해 반복 시험 후 25℃의 인장강도값의 경우 비교 대상인 상온포트홀 보수재가 개발중인 상온 포트홀 보수재보다 각각 36%와 12%로 매우 작은 것으로 나타났다.
        6.
        2012.02 서비스 종료(열람 제한)
        최근 도로 파손 발생 이전에 유지관리 차원에서 최소 비용으로 최대 효과를 볼 수 있는 예방적 유지보수공법에 대한 관심이 증가하고 있다. 예방적 유지보수공법 중에서 많이 사용되는 것이 표면처리공법으로 유화 아스팔트 바인더 또는 개질 유화 아스팔트 바인더가 사용되고 있다. 일반적으로 유화 아스팔트 바인더는 상온 시공이 가능하지만 공용 수명이 짧은 단점이 있다. 따라서 본 연구에서는 유화 아스팔트 계열 바인더의 단점을 보완하기 위하여 우레탄으로 개질된 아스팔트 바인더를 개발하고자 하며, 우레탄 개질 아스팔트 바인더 주재에 대한 저장 안정성 및 점도 실험을 수행하였다. 실험 결과 프로세스 오일의 양은 아스팔트 바인더 혼합물 중량에 대하여 30% 이상 필요한 것으로 나타났다. 아로마계, 나프탄계 및 파라핀계의 프로세스 오일을 혼합한 아스팔트 바인더 혼합물과 이소시아네이트를 혼합 할 경우 재료 분리가 발생했다. 재료 분리가 발생하지 않은 주재에 대한 점도 시험 결과 TDI(Toluene Diisocyanate)를 첨가하여 주재를 생산하는 것이 MDI(Diphrnyl Methane Diisocyanate)를 첨가한 경우보다 점도 기준을 만족시키는데 유리한 것으로 나타났다.