This study carried out zeta potential measurements of the Microcystis sp. under various solutions condition and investigated the characteristics of Microcystis sp. through the size control of microbubbles to eliminate algae that causes problems in aquatic ecosystems and human activities. DAF process was adopted and several coagulants were used to remove the Microcystis sp. CCD Camera was used to measure and analyze the size of microbubble, and fluorescent microscope was used to observe the particle, algae species and community. Zeta potential behavior of the algae was analyzed by using ELS-Z. Lab-scale and pilot-scale experiments were conducted to test flotation process. Polyaluminium chloride(PAC) coagulant was used, and the removal efficiency of the algae was assessed through Chlorophyll-a analysis. In the Lab-scale experiment, 2.2 ppm, 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride was injected to coagulate the algae. The coagulated algae was floated by the microbubble. The microbubbles in the experiments were generated at a air pressure of 450 ∼ 550 kPa. The microbubble size was controlled in 36 ㎛, 100 ㎛, and 200 ㎛, respectively by using different diffuser. The results of lab-scale experiments on flotation plant indicated that the average removal rate was about 90% or above for 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride. On the other hand, in the pilot-scale experiment, the removal efficiency was in the range of 85% to 95% in all dose ranges of polyalumium chloride and aluminium sulfate coagulants.
This study was designed to synthesize mesoporous carbon, porous carbonic material and to characterize its surface in an attempt to adsorption methane gas(CH4). Synthesis of mesoporous carbon was carried out under two steps ; 1. forming a RF-silica complex with a mold using CTMABr, a surfactant, and TEOS, raw material of silica, and 2. eliminating silica through carbonization and HF treatment. The mesoporous carbon was synthesized under various conditions of synthesis time and calcination. Eight different types of mesoporous carbon, which were designated as MC1, MC2, MC3, MC4, MCT1, MCT2, MCT3, and MCT4, were prepared depending upon preparation conditions. The analysis of mesoporous carbon characteristics showed that the calcination of silica stabilized the mixed structure of silica and carbonic complex, and made the particle uniform. The results also showed that hydrothermal synthesis time did not have a strong influence on the size of pore. The bigger specific surface area was obtained as the hydrothermal synthesis time was extended. However, the specific surface area was getting smaller again after a certain period of time. In adsorption experiments, CH4 was used as adsorbate. For the case of CH4, MCT3 showed the highest adsorption efficiency.
Efforts were made to determine the activation energy and the reaction order by adopting Kissinger and Flynn-Wall-Ozawa analysis methods. All the data were acquired from TGA thermograms for the mixed fuels with different temperature heating rates. It could be known that both the coal and the mixed fuels decomposed thermally at temperature ranges of 300~700℃. The temperature at the maximum reaction rate, Tp, could be determined by DTG method, which could be obtained by differentiation of TGA thermogram. Kissinger analysis showed the linear relationship with experimental data, showing the activation energy of 319.64 ±4 kJ/mol. From Flynn-Wall-Ozawa analysis, it was shown that the activation energies and the reaction orders did not undergo any significant changes with both the conversions and the heating rates. It was considered from this facts that the combustion mechanism of the mixed fuels could not be affected by the extent of conversion and heating rate. In the present study, the activation energies showed different values according to the different analysis methods. The difference might be originated from the inconsistency of the mathematical data treatment method. In other words, while the activation energies obtained from the Kissinger method indicated the average values for overall reaction, that from Flynn-Wall-Ozawa method showed the average values for the each conversion around Tp.
The purpose of this study is to synthesize transition metal doped mesoporous silica catalyst and to characterize its surface in an attempt to decomposition of N2O. Transition metal used to surface modification were Ru, Pd, Cu and Fe concentration was adjusted to 0.05 M. The prepared mesoporous silica catalysts were characterized by X-ray diffraction, BET surface area, BJH pore size, Scanning Electron Microscopy and X-ray fluorescence. The results of XRD for mesoporous silica catalysts showed typical the hexagonal pore system. BET results showed the mesoporous silica catalysts to have a surface area of 537 ∼973 m2/g and pore size of 2∼4 nm. The well-dispersed particle of mesoporous silica catalysts were observed by SEM, the presence and quantity of transition metal loading to mesoporous surface were detected by XRF. The N2O decomposition efficiency on mesoporous silica catalysts were as follow: Ru>Pd>Cu>Fe. The results suggest that transition metal doped mesoporous silica is effective catalyst for decomposition of N2O.