The increasing interests on patents have led many individuals and companies to apply for many patents in various areas. Applied patents are stored in the forms of electronic documents. The search and categorization for these documents are issues of major fields in data mining. Especially, the keyword extraction by which we retrieve the representative keywords is important. Most of techniques for it is based on vector space model. But this model is simply based on frequency of terms in documents, gives them weights based on their frequency and selects the keywords according to the order of weights. However, this model has the limit that it cannot reflect the relations between keywords. This paper proposes the advanced way to extract the more representative keywords by overcoming this limit. In this way, the proposed model firstly prepares the candidate set using the vector model, then makes the graph which represents the relation in the pair of candidate keywords in the set and selects the keywords based on this relationship graph.
As Internet has been wildly spreaded and it's technique is advanced, the use of computers has been routinized and almost data are stored in computers. Accordingly, many companies and researchers have tried to find the relations in these tremendous data and the one way is to use clustering algorithm which is used to find out similar data set in the entire data set and to discover the common properties. In early period, clustering algorithm was performed based on a main memory of a computer and PAM(Partitioning Around Medoids) was representative, which can be complemented k-means algorithm defeat. PAM performs clustering by using the medoid of data instead of means. PAM works well in small data set but it is difficult to apply it to large data set. Therefore, CLARA(Clutering LARge Application) shows up to be used in large data set. This algorithm samples data from large data set and applies PAM to the sample data. CLARA has limits caused by the fixed samples in each clustering stage and has a problem that if the good mediod is not sampled then the result of the clustering becomes not good. CLARANS(Clustering Large Application based upon Randomized Search) overcomes these problems by drawing a sample with some randomness. This algorithm executes clustering using k mediod set extracted in the processing of clustering in each stage. The main objective is to compare and analyze the algorithms which are popularly used for the clustering of big data.
Globally, smart phones have been rapidly distributed, which has led to changes in people's life cycle. Most people who are under 60 are supposed to use smart phones. Additionally, as the ratio of people who are interested in physical exercise is increasing, some applications for smart phones can manage dividual's exercise with the web servers. However, most of them can only check how much individual works out and cannot compare other's body type and life environment. Moreover, users cannot share their own data with others. This paper proposed the system which can resolve those kinds of problems through data mining techniques. The suggested model will have ability to figure out the relation between body type and the amount of exercise, find out if his work is proper from the result of classification and can pick out the features which is common to people who have similar body type and the amount of workout by applying data mining techiques. This model also will be able to recommend the proper amount of workout to each individual in order that they keep good health state efficiently.
In order to get effective and useful results after experiments, it is essential to classify and analyze data resulted from experiments. After these processes, obtained data enables us to have meaningful indications. During experiments, the main concern was to find the reducing ratio of formaldehyde concentrations compared to reference level of added material which affect the indoor air quality. Finally, the main objective of this study is to validate on optimal added amount of eco-friendly material for functional concrete.
Recently, many researchers have been executed on functional concrete in various fields. Especially, some researchers on added material for functional concrete are executed to improve the indoor air quality in daily living space. The indoor air quality was estimated by reducing capacity for the concentrations of formaldehyde. The main objective of this study is to provide a model to predict optimal amount of added material for functional concrete.