본 연구에서는 구조물의 재료, 구조물의 단면, 지진 하중등의 불확실성을 고려한 저형 전단벽의 최대 전단력를 예측하는 뉴 런-네트워크 모델을 개발하였다. 이를 위해 실험 데이터를 통해 검증된 박스타입 저형 전단벽 수치해석 모델을 구축하였고, 가정된 분 포를 통해 200개의 구조물의 재료, 단면변수를 라틴 하이퍼 큐브 샘플링을 통해 추출하였다. 또한 이전 연구에서 사용된 인공지진파를 데이터를 기반으로 10개의 다른 PGA 레벨별 총 200개의 인공지진파 데이터를 구축하였다. 뉴런-네트워크 모델의 Training 및 testing을 위해 200개의 데이터셋에 상응 수치해석 모델을 구축하고 최대 전단력을 산출하였다. 이렇게 구축된 데이터셋을 이용하여 최종적으로 뉴런-네트워크 모델을 확정하였다. 마지막으로 구축된 모델로부터 얻어진 취약도와 기존에 사용되는 방법들로부터 얻은 취약도를 비교, 분석하여 본 연구에서 구축된 모델의 정확도를 보여주었다.
벨로우즈 신축이음관은 구조적 특성으로 인해 큰 변위 용량을 갖으며 과도한 상대변위에 의한 매립 배관 시스템의 손상을 저감시키기 위해 연결부로써 사용된다. 벨로우즈 신축이음관의 내진성능 평가를 위한 연구에서 한계상태는 변형률을 적용하였지만 변형률 기반 한계상태는 벨로우즈 신축이음관의 큰 변위용량을 고려할 수 없다. 또한 벨로우즈 신축이음관의 성능평가와 한계상태 분석을 위한 해석적 및 실험적 연구는 수행된 사례가 극히 적다. 따라서 본 연구는 단조 및 반복하중을 받는 벨로우즈 신축이 음관의 해석적 연구를 통해 벨로우즈 신축이음관의 한계상태를 분석하였다. 결과적으로 단조하중 보다 반복하중을 받는 벨로우즈 신축이음관은 더 낮은 변위에서 누출이 발생하였다. 반복하중으로 인한 피 로 및 라체팅 현상으로 인해 단조하중 보다 낮은 변위의 성능을 갖는 것으로 보여진다. 따라서 반복하 중에서 관측된 변위응답을 기반으로 벨로우즈 신축이음관의 내진성능 평가를 수행하는 것이 보수적일 것으로 판단된다.
Prestressed Concrete Containment Vessels(PCCV)는 중대사고 발생 시 방사능 누출을 막기 위한 최 후의 방벽이며 체르노빌 및 스리마일 섬 원전 사고 이후 PCCV의 내압성능에 대한 관심이 높아졌다. PCCV는 장비반입 및 작업자 출입 등을 위한 다양한 관통부가 존재한다. 이러한 관통부로 인해 PCCV는 비축대칭적인 변형을 보이며 관통부는 취약부위로 고려된다. 하지만 관통부의 거동은 전체모 델에서 정확히 모사할 수 없다. 따라서 PCCV의 내압성능 평가를 위한 규제지침인 Reguratory Guide(RG) 1.216은 관통부에 대한 내압성능 평가를 위해 상세국부모델을 작성하여 평가하도록 권고하고 있다. 하 지만 대부분의 국부모델을 이용한 PCCV의 내압성능 평가와 관련된 선행연구는 전체모델을 이용하여 관통부의 응답을 관측하고 보정인자를 사용하여 수행되었다. 따라서 본 연구는 내압을 받는 1:4 scale PCCV의 관통부에 대한 거동 분석과 내압성능 평가를 위해 관통부의 상세 국부 유한요소 모델을 구축 하였다. 미국의 Sandia National Laboratory의 실험적 연구 결과와 비교하여 구축된 모델을 검증하였 으며 관통부의 내압거동을 분석하였다.
격납건물은 원자력 발전소의 중대 사고 발생시 방사성 물질의 외부 방출을 막는 심층 방어 체계 중 마지막 방벽이다. 중대사고 발생시 격납건물 내부에선 노심 융해와 수소 발생으로 인한 내압 상승과 증기 폭발로 인한 구조적 손상이 일어나며, 이에 대한 구조적 건전성을 평가하기 위해 격납건물에 대 한 극한 내압 성능 평가를 실시한다. 극한 내압 성능 평가 방법 중 확률론적 평가시 현실적인 제약으 로 인해 고신뢰도 유한요소해석 모델을 이용하며 이때에 불확실성 인자들의 확률 분포 특성을 고려한 데이터 셋을 샘플링 기법을 이용하여 구성한 후 비선형 해석을 실시한다. 도출된 비선형 해석 결과는 취약도 곡선을 도출에 사용되며, 취약도 곡선을 이용하여 확률론적인 평가가 실시된다. 샘플링 기법에 따라 적절한 표본 크기가 아닌 데이터셋을 구성하게 되면 통계적 불확실성으로 인한 취약성 분석의 오차가 증대된다. 하지만 유한요소해석시 발생하는 막대한 계산 비용으로 인하여 기존의 방식은 적절 한 샘플링 크기 선정 및 부적절한 샘플링 크기 선정으로 인한 확률론적인 성능평가에 대한 영향에 대 한 정량화 및 평가를 제한적으로 수행하였다. 따라서 본 연구에서는 격납건물의 재료적 특성 및 내압 으로 인한 변위 데이터를 기반으로 생성한 인공신경망 모델을 통해 유한요소 해석에 대한 대리모델을 생성한다. 이후 생성한 대리모델을 기반으로 일반적인 불확실성 분포 샘플링에 사용되는 Monte Carlo method, latin hypercube sampling, Sobol sequence을 이용하여 표본 크기에 따른 격납건물 확률론적 인 극한내압성능 평가에 대한 영향을 정량화 및 평가를 실시하겠다. 이를 통해 제한적으로 탐색되었던 불확실성 공간에 대하여, 그 통계적 불확실성 및 전방위적인 탐색이 가능해 질것으로 기대한다.
전기 캐비닛은 병원 및 발전소와 같은 중요 시설물에서 운영과 관리를 위한 시스템 기기를 보관한 다. 지진과 같은 극한하중 하에서 중요 시설물은 지속적으로 운영 및 제어되어야 하기 때문에 전기 캐 비닛의 안전성은 평가되고 확보되어야 한다. 하지만 실험적 연구만으로 다양한 유형의 전기 캐비닛에 대한 내진성능 평가를 수행하는 것은 많은 제약이 있다. 따라서 다양한 연구자들은 전기 캐비닛의 유 한요소 모델을 구축하고 내진성능 평가를 수행하였다. 유한요소 모델은 beam-stick 요소를 기반으로 구축되거나 3차원 shell 요소를 기반으로 구축되어왔다. Beamk-stick 요소 기반 및 3차원 shell 요소 기반의 유한요소 모델에 대한 전체거동에 대한 비교를 수행한 사례는 있으나 국부거동에 대한 동적응 답을 비교한 연구사례는 없다. 전기 캐비닛은 내부에 시스템 기기가 보관되므로 내부의 국부거동 기반 의 내부응답을 포착할 수 있어야한다. 따라서 본 연구는 단문형 전기 캐비닛에 대한 beam-stick 요소 및 3차원 shell요소를 기반으로 유한요소 모델을 구축하고 동일한 높이에서 가속도 응답을 비교하였다. 결과적으로 beam-stick 요소 기반의 3차원 유한요소 모델은 전기 캐비닛 내부 응답 스펙트럼을 정확 히 예측할 수 없기 때문에 내부 응답 스펙트럼을 위해서는 3차원 shell요소 기반의 상세 유한요소 모 델을 사용해야 한다.
원자력 발전소에서 배관 시스템은 냉각수 및 오염수를 운반하고 생성된 증기를 터빈으로 이동시켜 에너지를 생산하는 중요한 설비이다. 국내에 건설된 원자력 발전소의 가동연수가 증가함에 따라 배관 시스템의 물리적, 기계적 성질의 열화현상은 발생할 수 있으며 이를 경년열화로 정의한다. 배관 시스 템의 경년열화는 재료의 피로, 부식(국부감육), 마모 등과 같은 메커니즘을 통해 발생할 수 있으며 재 료의 강도 및 시스템의 성능 저하와 균열을 야기할 수 있다. 지속적이고 안정적인 에너지 생산을 위해 경제성과 정확도를 고려한 원전 배관 시스템의 손상 감시 기술은 필요하다. 따라서 본 연구는 원전 배 관 시스템의 손상 감시 기술을 개발하기 위한 기초적인 연구로써 배관 시스템의 취약요소로 판단되는 elbow의 국부적인 감육에 따른 거동의 변화를 분석하고자 한다.