This study analyzed two dimensions hydraulic characteristic for actual flood events in steep meandering channel. It could get analysis results as follows;
A water level difference of downstream more great than one of upstream at inner and outer of meandering channel. It judged that a significance of downstream level could appear more greatly in meandering channel bank, hydraulic structure and flood inundation analysis. As velocity and depth analysis was shown that much amount flow passing fast velocity happened in meandering channel, it could help establishment of meandering channel bank. In this study, the results of two dimension hydraulic analysis results could help a counterpaln establishment for the flood inundation and bank collapse.
This study is aimed at the development of a runoff forecasting model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The study area is the downstream of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model. The model performance was improved as the measuring time interval(Tm) was smaller than the sampling time interval(Ts). The Neuro-Fuzzy(NF) and TANK models can give more accurate runoff forecasts up to 4 hours ahead than the Feed Forward Multilayer Neural Network(FFNN) model in standard above the Determination coefficient(R2) 0.7.
The size of minimum order stream has a very sensitive effect on runoff analysis model using the divergence characteristic of stream. Therefore, in this study, the threshold area of minimum order stream has been examined the change characteristic of topographical parameters. The subject basin of the research was the upper basin of the Kumho water gage station which is located in the middle of the Kumho river. The 1:25,000 numerical geography which was constructed 10×10m mesh was used. The range of investigation of topographical parameters are number of stream order, length, area, slope, basin relief, sinuosity ratio, drainage density and total stream length etc. It was found from the result of analysis that the threshold value of minimum order stream has a very big effect on topographical parameters of basin. It was found that the threshold area of minimum order stream revealed under 0.10km2. Furthermore, the parameters showed a serious change except for over 0.10km2.
본 연구의 목적은 홍수유출해석을 위한 확정론적 유출모형의 개발에 있으며, 유출과정은 비 선형으로 취급하여 단순화시킨 개념적 모형을 유역유출모형으로 제시하였다. 개념적 모형의 구조는 지표유출을 일으키는 지표면과 지표하유출을 일으키는 토양층으로 구분하고 이들 각 구조를 지표와 지표하로 나누어 유출과정을 개념화하였으며, 지표흐름의 지체효과는 부탱크를 도입하여 나타내었다. 지표하 구조에서 중간 및 지표하 흐름의 성분들은 수치 filter를 이용하여 분리하였다.