EPS(Electric Power Steeing) has been a popular system in the automotive industry since 2000 after the technology and safety was validated. The Korean Refrigerated Carts like Hankook Yogurt Coco was developed for the first time in the world. However this carts system and other small tranporting carts has no EPS. Thus the drivers of carts needed a EPS to avoid the burden when steeing a big weighted cart with 750Kgf as many women drivers complain the pain on their shoulders. This paper describes the application of EPS on Korean refrigerated carts with simulation results and experimental data shows the improvement of steering efforts.
Bellows product is an important part in the area of plant engineering, shipbuilding and petrochemistry. For safety and durability it is necessary to consider lots of factors when designing it. This research developed a metal bellows design software based on EJMA 10th Edition manual. This Bellows software was developed by using Excel software and can be able to design U type of bellows which are Unreinforced Single Bellows, Unreinforced Double Bellows, Reinforced Single Bellows and Reinforced Double Bellows. The already proven bellows model were designed to verify this software. This software would predict the life cycle of a product and produce a company report to be provided to the demanding company. This suggested updated software will be helpful for design engineers to save time and effort.
MDPS control has been a difficult problem for the past two decades. Though there are many ways to control steering feeling, the MDPS control logic is still being upgraded or developed for steering feel improvement. A new point of view in MDPS is proposed by evolution logic, which is a new driver friendly improvement based on the analysis of driver’s driving pattern. As a result of the application of evolution logic, this paper shows that drivers behaviour effecting factors among MDPS parameters will efficiently lead to customers’ satisfaction.
This study performed a finite element stress analysis of pipe system connected by bellows based on APDL(ANSYS Parametric Design Language) customizing. The effects of different shapes of developed pipes for various parameters are studied using the finite element commercial package for this study. The structural behavior of complex pipe structures with bellows was also investigated to study the interactions between bellows and other parts. Based on the ANSYS APDL, the effect of initial axial and lateral displacements, and internal temperature and pressure on the Von Mises stress distribution is also analyzed.