검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        Poly(lactide)s(PLA) is an attractive material to solve the problem of waste plastic accumulation in nature because of its biodegradability. The lactide exists in three stereoisomeric configurations: L-lactide, D-lactide, and meso-lactide. PLA stereocomplexes, formed by the mixing of two enantiomers, poly(L-lactide)(PLLA) and poly(D-lactide)(PDLA), have many favorable characteristics because the stereocomplex showed 50°C higher melting point than each enantiomeric polymer and the resistance toward degradation increased. In this study, we investigated the influence of the composition and the optical purity of each component on the formation of stereocomplexes. Also, the nanofibers of stereochemical PLA and their blends were prepared by electrospinning method. The properties of the obtained fibers were analyzed by differential scanning calorimetry and scanning electron microscopy. The results showed that a degree of stereocomplex was controlled by change of optical purity of each component. The enzymatic degradation of the fibers were strongly dependent on the stereocomplex.
        2.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        Fibers of microbial polyesters, poly(3-hydroxy butyrate) (PHB) and poly(3-hydroxy butyrate-co-3-hydroxy valerate) (HB-co-HV) were prepared by electrospinning method. The obtained fibers were evaluated by differential scanning calorimetry, scanning electron microscopy, and oil absorption. The formation of fibers was strongly dependent on a concentration of solution. At a low concentration, the fibers contained beads which is from aggregation of polymer due to short evaporation time. The fine fibers with 2-5 mm diameter were obtained at 20 wt% concentration. The contact angle measurement showed that the fiber had higher water contact angle than the film due to the lotus-like effect. Oil absorbency showed that the fiber had higher than the film. Specially, the HB-co-HV fiber which was spinned from 20 wt% absorbed 65% oil which is much higher than that of a normal polypropylene-based oil paper.