검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2014.09 구독 인증기관·개인회원 무료
        대기 공기질에 대한 국민적 관심이 높아짐에 따라 포장도로나 비포장도로에서 차량의 주행에 의해 발 생하는 도로 재비산 먼지를 줄이기 위한 노력이 이루어지고 있으며, 이에 따라 도로 재비산 먼지의 농도 와 특성을 조사 및 관측하는 연구가 진행되고 있다. 도로 상에 분포되어 있는 미세먼지는 각종 차량의 주 행에 의해 재비산되어 대기 중의 미세먼지 농도를 증가시킬 수 있으므로, 재비산 먼지의 농도를 실시간으 로 측정하여 도로의 정비와 청소의 근거 자료로 활용하고 있다. 따라서 도로 재비산 먼지를 효과적으로 측정하는 것은 매우 중요하다. 도로 재비산 먼지의 측정 효율에 영향을 주는 요소로는 측정차량의 속도, 샘플링 유량, 그리고 측정을 위한 샘플링 입구의 위치 등이 있다. 본 연구에서는 도로 상황에 따른 측정차 량의 다양한 속도를 고려하여 도로 재비산 먼지가 효과적으로 흡인되도록 하는 샘플링 입구의 위치 선정 에 관한 수치해석 연구를 진행하였다. CFD 해석을 위한 상용 코드인 FLUENT를 사용하였고, 도로 재비산 먼지의 측정에 실제 사용되고 있는 측정차량을 모사하여 측정차량 주위의 공기 유동을 해석하였다. 차량의 주행 속도를 고려하여 차량 전면 부로부터 일정한 속도의 기류가 불어오는 것으로 가정하였다. 또한, moving boundary 조건의 설정을 통 해 차량의 주행에 따른 바퀴의 회전과 도로면의 차량에 대한 상대적 이동을 구현하였다. 회전하는 바퀴 주변의 압력계수를 시뮬레이션을 통해 예측하여 이를 기존 문헌의 실험 결과와 비교함으로써 본 연구에서 채택한 시뮬레이션 방법의 정확성을 검증하였다. FLUENT에 내장되어 있는 DPM(Discrete Phase Models) 코드를 사용하여 도로 재비산 먼지의 이동 경로를 예측하였다. 측정차량의 주행에 따른 바퀴와 도로면의 마찰에 의해서 도로상의 먼지 또는 타이어 마모 먼지가 비산되는 것으로 가정하였고, 차량의 바 퀴와 도로면의 마찰부에서부터 입자가 어떠한 경로로 공기 중에서 이동하는 지 파악하였다. 도로 재비산 먼지의 이동 경로 해석 결과로부터 도로 재비산 먼지가 가장 많이 지나가는 위치를 파악하 고, 이를 토대로 하여 도로 재비산 먼지를 효과적으로 측정하기 위한 샘플링 입구의 위치를 제안하였다. 추후에 실험을 진행하여 제안된 샘플링 위치가 적절한 지 여부에 대해 시뮬레이션 결과와 비교하여 보완 할 예정이다.
        3.
        2014.09 구독 인증기관·개인회원 무료
        대기오염의 심각성이 대두되면서 포장도로 혹은 비포장도로에서 발생되는 재비산 먼지의 농도 측정값 은 도로의 정비 및 청소의 근거 자료로 사용되며 대기의 공기질을 향상시키기 위한 개선책을 마련하는데 중요한 자료로 활용된다. 도로에서 재비산되는 먼지의 농도 측정은 도로 조건에 따라 변하는 측정차량의 속도, 측정 샘플링 입구의 위치, 샘플링 유량 등 다양한 변수의 영향을 받는다. 본 연구에서는, 도로 상황 에 따라 변하는 측정차량의 속도에 관계없이 효과적인 샘플링이 될 수 있도록 하는 등속흡인장치의 평가 를 수치해석 방법으로 진행하였다. 본 연구에서 사용된 등속흡인장치의 입구는 도로 재비산 먼지를 흡입하기 위한 샘플링 라인과 연결되 어 있고, 측정차량의 속도에 따라 등속흡인장치로 유입되는 공기의 유량이 변하게 된다. 등속흡인장치 내 로 유입된 공기는 2단으로 분리되어 등속흡인장치를 빠져나간다. 즉, 도로 재비산 먼지의 농도를 측정하 기 위해 3 L/min의 유량은 등속흡인장치의 가운데에 위치한 중심관을 통해 에어로졸 측정 장비로 유입되 고, 나머지 유량은 후단의 관을 통해 등속흡인장치를 빠져나게 된다. 이 때, 등속흡인 조건을 만족하기 위 해 중심관의 입구 위치가 측정차량의 속도, 즉 총 샘플링되는 유량의 변화에 맞추어 이동하게 된다. 유동의 높은 레이놀즈 수와 등속흡인장치의 형상을 고려하고 standard κ-ε turbulence model을 이 용하여 등속흡인장치 내에서의 유동의 특성을 해석하였다. 이후 유동해석 결과를 바탕으로 하여 입자의 거동을 해석하였다. 유동 해석과 입자 거동 해석을 통해 분석한 결과, 측정차량의 속도 변화에 따라 중심 관의 위치가 선형적으로 변하며 측정차량의 속도가 20km/h부터 35km/h까지 변할 때 등속흡인장치 내에 서 등속 흡인이 가능한 것으로 평가되었다.