검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2015.05 서비스 종료(열람 제한)
        Hydrothermal Carbonization(이하 HTC), 열수탄화공정은 가수분해(加水分解)를 통해 유기성 폐자원을 에너지화 하는 기술로 함수율에 관계없이 다양한 재료에 적용할 수 있으며, 고위발열량 6,000kcal/kg 이상의 고효율의 고형연료를 생산할 수 있는 기술이다. 이에 본 연구에서는 0.1ton bench scale HTC 반응기를 이용하여 1) S매립지에 반입되는 건설폐목재를 활용하여 고열량 고형연료를 생산하고, 고형연료의 특성을 분석하였으며, 2) 고함수 유기성폐기물인 감귤박을 이용한 고형연료 생산 및 그 특성 분석을 수행하였다. 본 연구는 0.1ton 규모의 열수탄화(HTC) 회분식반응기를 이용하였다. 저함수율의 폐목재는 매립지로 반입되는 건설폐목재를 1 cm 미만으로 파쇄하여 사용하였다. 0.1ton 반응기에 목재 10kg, 용매(물) 50kg을 투입한 후폐쇄조건 상에서 가열을 진행하였다. HTC공정은 반응온도 260℃, 반응시간 1시간으로 운전되었다. 고함수 유기성폐기물인 감귤박은 제주도개발공사 감귤가공공장으로부터 제공 받아 고형연료 제조에 활용하였다. 감귤박의 경우, 분쇄나 별도의 용매(물) 투입 등의 전처리 없이 감귤박 원료만을 60kg 투입하여, 240℃, 반응시간 1시간으로 운전하였다. 실험결과, 건설페목재의 경우 원재료의 발열량은 고위발열량으로 약 4,340kcal/kg이었으나 열수탄화 후 약 6,920kcal/kg으로 증가하였다. 고함수 원료인 감귤박의 경우 고위발열량 약 4,360kcal/kg에서 열수탄화 후 고위발열량 약 6,690kcal/kg으로 증가하였다. 고정탄소율 역시 건설폐목재 고형연료와 감귤박 고형연료에서 각각 40.5%, 32.3%로 고열량 양질의 고형연료로 활용할 수 있음을 확인할 수 있었다.
        3.
        2013.11 서비스 종료(열람 제한)
        화석연료는 현재 가장 많이 이용되는 에너지 수단이다. 그러나 화석연료는 매장량이 한정되어 있고 사용하면서 배출되는 배출가스는 지구온난화와 여러 가지 환경문제를 일으키고 있다. 이러한 화석연료의 대체할 에너지로 자연 에너지로서 재생 가능하여 반영구적으로 사용이 가능한 재생가능에너지(Renewable energy)가 주목되어지고 있다. 바이오매스는 다른 재생가능에너지와는 다른 탄소계의 에너지 자원이고 전기에너지 이외에 고체, 액체, 기체연료나 화학연료 및 원료로 변환 할 수 있다는 장점이 있다. 또한 지역적으로 편재되어 있지 않고 carbon neutral 에너지로 지구온난화 문제에서도 자유로운 장점으로 인해서 현재 기술적, 경제적 관점에서 가장 현실적인 대체에너지라 할 수 있다. 그러나 이러한 바이오매스도 에너지밀도가 낮고 분산되어 있어 수집, 저장 및 운반비용이 크고 기후의 영향을 받으며, 다양성으로 인한 불균일성으로 인해서 사용 측면에서 어려움이 있다. 따라서 이러한 바이오매스의 단점을 극복하기 위한 방법으로 열수탄화 방법을 이용한 고형연료 생산기술이 주목을 받고 있다. 본 연구는 실험실 규모의 압력반응기로 바이오매스 중에서 폐목재를 이용하여 열수탄화 반응 특성을 반응조건별로 확인하였다. 생성된 고체생성물의 고형연료 특성과 액체생성물의 특성을 평가하였다. 반응온도와 반응 시간은 증가할수록 발열량은 증가하고 수득율은 감소한다. 또한 휘발분의 함량은 감소하고 고정탄소의 함량은 증가한다. 물과 폐목재의 혼합비율도 반응에 영향을 미치는 것으로 나타났다. 액체생성물은 반응온도와 시간이 증가할수록 COD와 유기산의 농도는 증가하고 총질소와 총인의 농도에는 변화가 없었다. 열수탄화 전후의 수분 재흡수성을 비교하면 반응 후 고체생성물의 수분 재흡수성이 크게 향상되는 것을 확인할 수 있다. 또한 기존의 반탄화(torrefaction) 고체생성물보다 성형성이 좋은 것으로 확인되었다.