본 연구에서는 이산화탄소 고정화에 있어 이산화탄소 전환을 위해 MEA를 이용한 습식화학흡 수법의 셔틀메카니즘을 도입하였다. 또한 알칼리 무기물질을 다량 함유한 산업부산물을 습식탄산화법을 이용해 처리하고자 하였다. 즉, 산업부산물의 화학적 처리를 통해 칼슘이온을 용출하였다. 산성물질을 이용한 용출상징수를 ICP로 분석한 결과, 칼슘이온이 최대 17,900 ppm(1.79%)을 확보하였다. 또한 MEA를 이용한 습식 흡수공정을 통해 상온, 상압조건의 이산화탄소 분위기에서 94%의 전환률을 얻었 다. 슬러지의 액상탄산화를 통해 슬러지 mg 당 0.175 mg의 이산화탄소를 고정하였으며, 최종생성물의 XRD 분석결과 일반적인 탄산칼슘의 결정구조인 calcite 형상을 확인하였다.
In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, Ca²+ was contained up to 1100 ppm. We used MEA as a CO₂ absorbent for the liquid carbonation. A precipitate CaCO₃ was produced at more than MEA 20 wt%. The precipitate CaCO₃ as a final product was separated and dried. The result of XRD was confirmed the generation of CaCO₃ to calcite structure.
본 연구개발은 기존 화학공정에서 발생되는 수소(H2), 암모니아(NH3), 저메인(GeH4) 및 DCS(SiH2CL2) 등의 폭발성 가스를 플라즈마 기술을 적용한 에너지 회수형 건식 소각 방식을 이용한 기술로서 플라즈마에 소비되는 에너지를 전력량, 에너지 회수, 축열 등의 방법을 통하여 경제적이며, 효율적인 처리 기술에 대한 연구를 수행하였다. 플라즈마 열 회수는 배출되는 열에너지를 회수하여 재투입하고 연소로 내부에 축열을 통한 효율증가 등의 방법으로 폭발성 가스의 처리효율 및 에너지 절감효과를 파악하였다. 본 연구결과 상기 가스의 대부분에서 99% 이상의 처리효율을 나타내었다.
This research deals with carbon dioxide utilization using amino acid salt solution. Energy-efficient CCU (carbon capture and utilization) technology in which no thermal desorption step is required was suggested. Waste concrete was considerd as Ca2+ source. (1.5 M potassium glycinate + 0.15 M piperazine) was used. After solution is saturated with carbon dioxide, 25wt% 100 ml of calcium chloride solution to replace Ca2+ from waste concrete in experiment was added. And then, precipitated calcium carbonate (PCC) was formed. As a result of absorption experiments of (1.5 M potassium glycinate + 0.15 M piperazine), CO2 loading value for the first absorption and reabsorption step was 0.7354 and 0.2848 mol CO2/ mol absorbent, respectively. Also, the yield of PCC formation of (1.5 M potassium glycinate + 0.15 M piperazine) was 43.63%. Based on these data, the amount of CO2 reduction was calculated. Calcium carbonate can be classified into calcite, vaterite, and aragonite according to their crystal structures and morphology. XRD and SEM analysis were performed and the result showed that the morphology of produced PCC salt was vaterite.
광물 탄산화 공정은 CCS 기술 분야 중 하나로써 이산화탄소를 특정 금속 또는 금속화합물과 반응시켜 안정하고 영구적인 탄산염 형태로 저장 및 고정화하는 기술이다. 연간 약 5000만톤 발생하는 산업 부산물은 알칼리성 금속들을 상당량 포함하고 있고 이산화탄소 발생지 근처에서 수급이 가능하므로 탄산화의 원료로 이용하는데 유리하다. 본 연구에서는 산업 부산물중 석탄재를 이용하여 이산화탄소와 액상탄산화 반응 후 탈리액 내 미반응 무기 양이온의 재이용에 대한 가능성 및 특성을 알아보고자 하였다. 탄산화전 석탄재의 무기 양이온 용출 효율을 높이기 위해 용출제로 1N HCl이 사용되었다. 이산화탄소의 공급농도는 질소와 혼합되어 배기가스 농도인 15vol%로 사용되었다. 이산화탄소 흡수제는 널리 쓰이고 있는 30wt%의 MEA(MonoEthanolAmine)수용액을 이용하였고 포화된 이산화탄소의 공급량 및 흡수량을 계산하였다. 탄산화 반응 전후의 무기양이온 용출농도, 이산화탄소 전환율, CaCO3 성분 확인 등은 IC, TGA, XRD 분석을 통해 확인되었다.
본 연구에서는 액상 탄산화 반응을 통하여 이산화탄소(CO2)를 안정하게 고정화가 가능한 알칼리 토금속인 칼슘(Ca)과 마그네슘(Mg) 성분을 다량 포함한 산업부산물인 순환골재에 아민계 흡수제를 이용한 액상 촉진탄산화 기술을 통한 개질화 반응에 대하여 고찰하였다. 순환골재는 굵은골재와 잔골재를 이용하여 무기양이온 용출을 위하여 다양한 용출제별 용출농도를 분석하였으며, 그에 따른 탄산화반응을 진행하였다. CO2는 발전소 포집농도인 15vol%를 이용하여 흡수용액인 MEA 5~30wt%에 따른 CO2 흡수량을 분석하였다. 상기의 과정을 통하여 순환골재 활용 CO2 저감량을 평가하였고 개질된 골재를 활용한 건자재 제작의 기초 데이터를 수립하고자 하였다.
최근 세계적으로 원유정제의 증가 및 탈황기술의 발달로 인하여 유황발생량에 대한 수급의 차이가 커지고 있으며, 향후 발생되는 폐유황의 다량활용에 대한 대책이 없을 경우 폐기물 처리 및 환경오염으로 인한 경제적 손실이 우려되며 폐유황의 다량 활용에 대한 대책이 시급한 실정이다. 따라서, 본 연구에서는 이러한 폐유황 및 석탄바닥재를 이용한 산업용 건자재로의 활용을 위하여 다양한 개질제를 이용한 유황폴리머 결합재(SPC, sulfur polymer cement)의 제조 특성에 대한 연구를 수행하였으며, 제조된 결합재를 이용한 SPC 모르타르에 대한 성능 테스트를 수행하였다.
화력 및 석탄가스화복합발전(Integrated Gsification Combined Cycle, IGCC)에서 발생하는 바닥회를 주요 골재로 순수유황, 유황폴리머시멘트(Sulfur Polymer Cement, SPC), 포틀랜드 시멘트 등의 다양한 결합재를 이용하여 제작된 콘크리트의 제조 및 제품 특성에 대한 연구를 수행하였다. 제품의 다양한 특성 비교를 통하여 석탄 바닥재를 주요골재로 하는 콘크리트 제작의 최적 결합재를 도출하여 산업용 건자재 생산의 기초 조건을 확립하고자 하였다.
국내는 Carbon Capture & Storage(CCS) 기술은 일정 수준에 도달해 있으나, 대량 저장을 할 수 있는 지중 및 해양지역의 확보와 실용화가 곤란한 실정이다. 따라서 본 연구에서는 액상 탄산화 반응을 통하여 이산화탄소(CO₂)를 안정하게 고정화가 가능한 알칼리 토금속인 칼슘(Ca)과 마그네슘(Mg) 성분을 다량 포함한 산업부산물인 석탄 바닥재 및 순환골재에 CO₂를 저장하기 위한 기초 연구를 수행하였으며, 이의 반응물인 개질된 석탄 바닥재 및 순환골재를 이용하여 건자재의 제조 가능성에 대한 연구를 수행하였다.
화석연료는 현재 가장 많이 이용되는 에너지 수단이다. 그러나 화석연료는 매장량이 한정되어 있고 사용하면서 배출되는 배출가스는 지구온난화와 여러 가지 환경문제를 일으키고 있다. 이러한 화석연료의 대체할 에너지로 자연 에너지로서 재생 가능하여 반영구적으로 사용이 가능한 재생가능에너지(Renewable energy)가 주목되어지고 있다. 바이오매스는 다른 재생가능에너지와는 다른 탄소계의 에너지 자원이고 전기에너지 이외에 고체, 액체, 기체연료나 화학연료 및 원료로 변환 할 수 있다는 장점이 있다. 또한 지역적으로 편재되어 있지 않고 carbon neutral 에너지로 지구온난화 문제에서도 자유로운 장점으로 인해서 현재 기술적, 경제적 관점에서 가장 현실적인 대체에너지라 할 수 있다. 그러나 이러한 바이오매스도 에너지밀도가 낮고 분산되어 있어 수집, 저장 및 운반비용이 크고 기후의 영향을 받으며, 다양성으로 인한 불균일성으로 인해서 사용 측면에서 어려움이 있다. 따라서 이러한 바이오매스의 단점을 극복하기 위한 방법으로 열수탄화 방법을 이용한 고형연료 생산기술이 주목을 받고 있다. 본 연구는 실험실 규모의 압력반응기로 바이오매스 중에서 폐목재를 이용하여 열수탄화 반응 특성을 반응조건별로 확인하였다. 생성된 고체생성물의 고형연료 특성과 액체생성물의 특성을 평가하였다. 반응온도와 반응 시간은 증가할수록 발열량은 증가하고 수득율은 감소한다. 또한 휘발분의 함량은 감소하고 고정탄소의 함량은 증가한다. 물과 폐목재의 혼합비율도 반응에 영향을 미치는 것으로 나타났다. 액체생성물은 반응온도와 시간이 증가할수록 COD와 유기산의 농도는 증가하고 총질소와 총인의 농도에는 변화가 없었다. 열수탄화 전후의 수분 재흡수성을 비교하면 반응 후 고체생성물의 수분 재흡수성이 크게 향상되는 것을 확인할 수 있다. 또한 기존의 반탄화(torrefaction) 고체생성물보다 성형성이 좋은 것으로 확인되었다.
이산화탄소의 증가에 따른 온실가스 저감방법에 대한 연구들이 활발히 진행이 되고 있다. 이산화탄소는 지구온난화를 야기하는 대표적인 온실가스이다. 이를 저감하기 위한 방안으로는 CCS(Carbon Capture and Storage)를 예로 들 수 있다. 하지만 CCS기술은 에너지의 소비가 비교적 높은 기술이며, 분리된 이산화탄소를 안정적으로 저장하기 위한 방법과 공간의 부재가 문제가 되고 있다. 이를 보완하기 위한 방안으로 CCU (Carbon Capture and Utilization)을 예로 들수 있다. CCU기술은 금속이온이나 생물학적인 방법으로 이산화탄소를 재이용하는 기술을 의미한다. 하지만 이러한 기술의 경우도 고온(500℃ 이상), 고압(20bar 이상)의 에너지 다소비 공정이라는 것과, 고정화를 하기위한 물질들의 안정적인 공급이 뒷받침이 되어야한다는 단점을 가지고 있다. 따라서 본 연구는 종래의 CCS/CCU기술의 문제점인 이산화탄소의 저장과 고정화물 feeder의 안정적인 공급을 위하여 이산화탄소 전환 및 고정화에 대한 연구를 수행을 하였다. 또한 연구는 기존의 고온, 고압을 탈피한 상온(30℃), 상압(1bar)의 조건으로 유지를 하여 에너지의 소비가 적은 조건에서의 가능성을 실험하였다. 고정화물을 형성하기 위한 feeder는 정유・석유화학에서 발생되는 petro ash를 사용하였다. petro ash내 포함되어있는 금속양이온은 약 48%를 넘기 때문에 안정적인 탄산염의 생성이 가능할 것으로 예측을 하였다. 실험결과 이산화탄소의 전환량을 5% MEA를 기준으로 0.241 mol-CO₂/mol-MEA였으며, 생성된 탄산염은 대부분 CaCO₃의 형태를 띄는 것으로 확인하였다. 전환용액에 포함되어있는 이산화탄소는 2차 탈거과정을 통하여 대부분이 탄산염의 형태로 전환이 되었다는 것을 확인하였다. 위와같은 실험을 통하여 이산화탄소의 안정적인 저장과 산업부산물로 발생되는 ash등의 재활용이 가능할 것이라 예측할 수 있었다. 더 나아가 생성된 탄산염의 정제과정을 추가 연구하게 된다면 부가적인 이익을 창출할 수 있는 방안이라 생각한다.