RI 폐기물 내에 있는 낮은 방사능의 요오드의 함량을 결정하기 위해 산분해법과 BPGe 감마 선분광계를 이용하는 방법이 개발되었다. 분석에 앞서 모의시료인 제염지 내에 이 일정량 첨가되었으며, 100 mL의 0.4 N 와 100 mL의 9 M , 10 mL의 30% , 1 mL의 를 넣고 산분해과정을 거치면서 증류된 용액을 응축하여 포집하였다. 의 용매추출에 의한 화학 분리과정을 거친 후 를 첨가해서 얻은 AgI 침전물을 여과하고 건조하여 측정하였다. 산분해 과정, 화학 분리과정, 여과 및 침전과정 등 세 단계로 나눠 회수율을 측정한 결과, 각각 94% 이상의 회수율을 나타냈으며, 본 연구의 측정조건에서 최소검출방사능은 0.6 Bq/g이었다.
레이저유도파열검출 기술을 이용하여 우라늄(VI) 가수분해물의 용해도를 측정하였다. 측정 용액의 우라늄 농도 범위는 , pH 범위는 , 그리고 이온 강도는 0.1 M 이며, 온도는 로 유지하였다. 문헌에 제시된 가수분해 상수와 specific ion interaction theory(SIT)를 이용하여 이온 강도 I=0 일 때의 용해도 곱 (solubility product) 상수 를 구하였다. 동일한 시료에 대해 흡수 및 형광 스펙트럼을 측정하여 가수분해 화학종의 존재를 확인하였다. 우라늄 농도에서 용액 중에 존재하는 주요 가수분해 화학종은 와 임을 보였다.
가압경수로형 원자력발전소의 운영과정에서 발생된 폐수지내 및 의 분포특성을 조사하였다. 표준용액을 사용한 의 회수율 측정결과, 사용한 산의 종류에 관계없이, 3 N-HCl , 주입한 농도 범위에서 의 회수율을 나타내었다. 같은 장치를 사용하여 HTO 표준용액 증류에 의한 의 회수율은 주입한 농도 범위에서 이었다. 습식산화-산용출법에 의한 폐수지의 및 동시분리시, 를 사용했을 때 다른 감마핵종에 의한 방해가 없었으며, 포집액이 섬광제와 잘 혼합되었다. 그러나 3 N-HCl을 사용했을 때 포집용액에서 및 등의 감마핵종이 검출되었다. 또한 Sample Oxidizer에 의한 포집용액에서도 및 등이 검출되었으며, 포집용액에서는 이 검출되었다. 폐수지의 총 함량중 약 70% 이상이 무기 탄소로 확인되었다. 30개 폐수지 시료중 8개 고방사능 폐수지의 및 의 평균농도는 각각 이었으며 22개 저방사능폐수지에서는 각각 이 검출되었다. 고방사능 폐수지의 평균 비는 28로 저방사능 폐수지의 0.70에 비해 높게 나타났으며, 및 의 농도는 서로 비례하는 경향을 보였다.
질산, 불산 및 과염소산을 사용하여 플루토늄 옥사이드 을 녹여 Pu 기준용액을 제조한후 UV-Visible-Near IR 분광기를 이용하여 Pu 흡수 스펙트럼 특성을 관찰하였다. 산성, 중성 및 알칼리 매질에서 Pu(III), Pu(IV) 및 Pu(VI)에 대한 분광학적 특성을 조사하였다. 또한 알칼리 및 산 농도 증가에 따른 Pu(VI) 흡수 스펙트럼에 대한 특성 피크 세기 및 위치를 관찰하였다. 염산 및 수산화나트륨 매질에서 환원제 첨가에 따른 Pu(VI) 산화수 변화를 측정하였다.