This study aimed to investigate the feasibility of improving dewaterability and settleability of sewage sludge using coagulation sludge. When mixed with sewage sludge and coagulation sludge at 1:1 ratio, capillary suction time(CST) and specific resistance to filtration(SRF) decreased by about 56% and 68%, respectively. It is found that total solids(TS) and volatile solids(VS) of mixing sludge are increased by about 59% and 53%, respectively. Also, the turbidity of the mixing sludge supernatant was reduced from 99 to 16 NTU. It is observed that the mixing of sewage sludge and coagulation sludge at 1:1 showed better effect than using poly-aluminum chloride(PAC) coagulant at 25 mg/L.
This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with 0.2 μm pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.