Due to tidal force, it is very difficult to estimate the hydraulic parameters of high permeable aquifer near coastal area in Jeju Island. Therefore, to eliminate the impact of tidal force from groundwater level and estimate the hydraulic properties, tidal response technique has been mainly studied. In this study we have extracted 38 tidal constituents from groundwater level and harmonic constants including frequency, amplitude, and phase of each constituent using T_TIDE subroutine which is used to estimate oceanic tidal constituents, and then we have estimated hydraulic diffusivity associated with amplitude attenuation factor(that is the ratio of groundwater level amplitude to sea level amplitude for each tidal constituent) and phase lag(that is phase difference between groundwater level and sea level for each constituent). Also using harmonic constants for each constituent, we made the sinusoidal wave and then we constructed the synthesized wave which linearly combined sinusoidal wave. Finally, we could get residuals(net groundwater level) which was excluded most of tidal influences by eliminating synthesized wave from raw groundwater level. As a result of comparing statistics for synthesized level and net groundwater level, we found that the statistics for net groundwater level was more insignificant than those of synthesized wave. Moreover, in case of coastal aquifer which the impact of tidal force is even more than those of other environmental factors such as rainfall and groundwater yield, it is possible to predict groundwater level using synthesized wave and regression analysis of residuals.
Spatial and temporal patterns of precipitation and temperature occur with regard to aspect and elevation of Mt. Halla in Jeju Island. Therefore, there is a need to predict regional drought associate with them to mitigate of impacts of drought. In this study, regional drought is predicted based on Palmer drought severity index (PDSI) and standardized precipitation index (SPI) using future (2015~2044) climate change scenario RCP (representative concentration pathways) 4.5 classified as 24 regions according to aspect and elevation. The results show that number and duration of drought will be decrease in Jeju Island. However, severity of severe drought will be increase in western and northern aspect with under 200 meters above mean sea level. These findings provide primary information for developing the proactive strategies to mitigate impacts of drought by future climate change in Jeju Island.
Quantitative assessment of groundwater level change under extreme event is important since groundwater system is directly affected by drought. Substantially, groundwater level fluctuation reveals to be delayed from several hours to few months after raining according to the aquifer characteristics. Groundwater system in Jeju Island would be also affected by drought and almost all regions were suffered from a severe drought during summer season (July to September) in 2013. To estimate the effect of precipitation to groundwater system, monthly mean groundwater levels in 2013 compared to those in the past from 48 monitoring wells belong to be largely affected by rainfall(Dr) over Jeju Island were analyzed. Mean groundwater levels during summer season recorded 100 mm lowered of precipitation compared to the past 30 years became decreased to range from 2.63 m to 5.42 m in southern region compared to the past and continued to December. These decreasing trends are also found in western(from –1.21 m to –4.06 m), eastern(-0.91 m to –3.24 m), and northern region(from 0.58 m to –4.02 m), respectively. Moreover, the response of groundwater level from drought turned out to be –3.80 m in August after delaying about one month. Therefore, severe drought in 2013 played an important role on groundwater system in Jeju Island and the effect of drought for groundwater level fluctuation was higher in southern region than other ones according to the regional difference of precipitation decrease.
Over 96.2% of the agricultural water in Jeju Island is obtained from groundwater and there are quite distinct characteristics of agricultural water demand/supply spatially because of regional and seasonal differences in cropping system and rainfall amount. Land use for cultivating crops is expected to decrease 7.4% (4,215 ha) in 2020 compared to 2010, while market garden including various vegetable crop types having high water demand is increasing over the Island, especially western area having lower rainfall amount compared to southern area. On the other hand, land use for fruit including citrus and mandarin having low water demand is widely distributed over southern and northern part having higher rainfall amount. The agricultural water demand of 1,214×10 3 ㎥/day in 2020 is estimated about 1.39 times compared to groundwater supply capacity of 874×10 3 ㎥/day in 2010 with 42.4% of eastern, 103.1% of western, 61.9% of southern, and 77.0% of northern region. Moreover, net secured amount of agricultural groundwater would be expected to be much smaller due to regional disparity of water demand/supply, the lack of linkage system between the agricultural water supply facilities, and high percentage of private wells. Therefore, it is necessary to ensure the total net secured amount of agricultural groundwater to overcome the expected regional discrepancy of water demand and supply by establishing policy alternative of regional water supply plan over the Island, including linkage system between wells, water tank enlargement, private wells maintenance and public wells development, and continuous enlargement of rainwater utilization facilities.
Fluctuation patterns of groundwater level as a factor that reflects the characteristics of groundwater system can be categorized as the various types of aquifer with the time-series data. Time-series data on groundwater level obtained from 115 monitoring wells in Jeju Island were classified according to variation types, which were largely affected by rainfall(Dr), rainfall and pumping(Drp), and unknown cause(De). Analysis results indicate that 106 wells belong to Dr and Drp and the ratio of the wells with the wide range of fluctuation in the western and northern regions was higher than that in the eastern and southern regions. From the results that Drp is relatively higher than Dr in the western region which has the largest agricultural areas, groundwater level fluctuations may be affected significantly due to the intensive agricultural use. Non-parametric trend analysis results for 115 monitoring wells show that the increasing and decreasing trends as the ratio of groundwater levels were 14.8% and 22.6%, respectively, and groundwater levels revealed to be increased in the western, southern and northern regions excluding eastern region. Results of correlation analysis that cross-correlation coefficients and the time lags in the eastern and western regions are relatively high and short, respectively, indicate that the rainfall recharge effect in these regions is relatively larger due to the gentle slope of topography compared to that in the southern and northern regions.