본 논문에서는 Russell (1980)의 감정차원 모델(Circumplex Model)을 확장하여 새로운 감정차원 모델링 방식을 제안한다. 기존의 감정차원 중 가장 대표적인 Russell의 모델은 각성(Arousal), 정서가(Valence)의 2개의 축을 이용하여 감정을 나타낸다. 하지만 기존의 연구에서는 Russell의 감정차원은 감정을 하나의 점으로만 표현하기 때문에 정확한 위치라고 할 수 없으며 감성과학, HCI, Ergonomics 등의 공학 분야에서 사용하기 어렵다고 주장하였다. 따라서 본 논문에서는 Russell의 감정차원 위에 감정들을 하나의 점으로 표현하지 않고, 데이터 분포를 가정하여 영역으로 표현하 는 방법을 제안한다. 실제 설문을 진행하여 자료를 수집하였고, 타원의 방정식을 이용하여 영역을 수식화하였다. 또한, 마지막 장에서 실제 많은 연구에서 사용되는 ANEW와 IAPS 데이터를 패턴인식 알고리즘을 통해 본 논문에서 제안한 모델에 적용해 보았다. 본 논문에서는 새로운 모델링 방법을 통해 기존의 연구자들에게 지적된 Russell 모델의 문제점을 보완하고, 이 모델을 공학 분야에서도 쉽게 적용할 수 있었다.
본 논문에서는 Russell의 감정차원 모델("A Circumplex Model")의 차원 축 중 Arousal 축의 요소(active, inactive) 간의 연관성을 파악하여 새로운 감정 표현 방식을 제안한다. Russell의 감정차원 모델은 arousal, valence의 2개의 축 위에 감정을 나타내는 단어(happy, joy, sad, 긴장 등)를 하나의 점으로 표현한다. 이런 Russell 모델은 감성과 학, HCI, 심리학 등 여러 분야의 연구에 가장 많이 사용되는 감정 차원이다. 하지만 기존의 연구(복합적 감정, 감 정과 감성, arousal 축과 valence 축의 차이점 등)에서는 Russell의 감정차원 모델은 표현방법의 수정이 필요하다고 주장하였다. 따라서 본 논문에서는 2개의 차원 축(arousal, valence) 중 arousal 축의 요소(active, inactive) 간의 연관 성을 확인하고 실험을 통하여 사용자들이 본인의 각성(arousal) 정도를 어떠한 방식으로 표현하는지 확인하여 Russell의 감정차원 모델의 새로운 표현 방식을 제안한다. 본 논문에서 제안하는 방식을 이용하여 Russell 모델의 문제점을 보완하였으며, 기존 연구에 대한 근거가 될 수 있었다.
본 논문에서는 기존에 Russell의 감정차원 모델(A Circumplex model)상에서 데이터의 분산 값을 줄이고, 복합적 감정(mixed feelings)을 표현하는 새로운 방법을 제안한다. Russell의 감정차원 모델은 감정을 뜻하는 단어(기쁨, 슬픔, 행복, 신남 등)를 제시한 뒤, 자가진단방식(SAM)을 이용하여 단어들의 평균과 분산을 구하고, 각 단어들을 PAD차원(Pleasure, Arousal, Dominance)에 하나의 점으로 표시한다. 하지만 다른 연구자에 의하여 Russell모델의 문제점으로 각 단어들의 분산 값이 커서 데이터의 신뢰도나 정확성이 떨어지며, Russell의 모델의 구조에선 복합 적 감정(mixed feelings)을 표현할 수 없는 등의 문제점들이 지속적으로 제기되었다. 본 논문에서는 이와 같은 문제점을 보완하기 위해 설문 방식의 변화를 통해서 실험을 진행하여, 데이터의 분산 값을 줄일 수 있었다. 또한 복합적 감정을 유발할 수 있는 실험을 통해 감정 상태의 긍정적/부정적인 부분의 관계를 확인해보고, Russell모델에서도 복합적 감정을 표현할 수 있음을 입증하였다. 본 논문에서 제안하는 방법을 이용하여 기존의 연구에서 보다 신뢰도와 정확도가 높은 데이터를 얻을 수 있으며, Russell모델을 적용시키기 어려웠던 생체신호, 복합적 감정, 실감 방송 등의 여러 분야에 적용 시킬 수 있다.