검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at -40 oC to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at -40 oC decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at -40 oC is the lowest.
        4,200원
        2.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        P-type thermoelectric material was sintered by Hot Press process (HP) and the effect of boron ( at%) addition on the thermoelectric properties were reported. To enhance the thermoelectric performances, the , alloys were fabricated by mechanical alloying (MA) and HP. The carrier of p-type SiGe alloy was controlled by B-doping. The effect of sintering condition and thermoelectric properties were investigated. B-doped SiGe alloys exhibited positive seebeck coefficient. The electrical conductivity and thermal conductivity were increased at the small amount of boron content ( at%). However, they were decreased over 0.5 at% boron content. As a result, the small addition of boron improved the Z value. The Z value of 0.5 at% B doped B alloy was , the highest value among the prepared alloys
        4,000원