This study investigated quality characteristics and functionality of rose sparkling wine that were manufactured by secondary fermentation after inoculation of yeast strains. The pH of the samples ranged from 3.96 to 4.05 and total acidity ranged from 0.23 to 0.32%. The alcohol contents of wines ranged from 6.4 to 6.6% and the CO2 pressure ranged from 2.0 to 2.6 bar. The brightness of rose wines ranged from 84.72 to 87.36, the redness from 9.28 to 14.15, and the yellowness from 9.50 to 19.20. The hue value of wines ranged from 1.137 to 1.513 and color intensity ranged from 0.724 to 0.882. Aroma analysis identified 14 alcohols, 22 esters, 4 ketones, 4 acids, and 17 miscellaneous compounds. The total tannin contents and total polyphenol contents of wines were 11.28~12.43 mg% and 24.79~28.20 mg%, respectively. The DPPH radical scavenging activity of wines ranged 63.33 to 67.89% and the ABTS radical scavenging activity of wines 82.16~86.06%. The results of this study provide a basis for establishing the brewing process of rose sparkling wines yeast strains.
Low alcohol (6%) wines were manufactured using Campbell Early. To develop the sterilization process of low alcohol wines, red wines were heat sterilized, and rose wines were nonthermal sterilized by concentration using potassium metasulfite and potassium sorbate. Samples were stored at 25℃ and quality characteristics were investigated by period. Results of this study revealed the pH of the samples after sterilization ranged from 3.15 to 3.19, and the total acidity of wines ranged from 0.011 to 0.024%. The free SO2 contents of wines ranged from 13.00 to 29.678 mg/L, and the total SO2 contents of wines ranged from 47.50 to 121.00 mg/L. L (lightness) of wines decreased whereas a (redness) and b(yellowness) increased. The hue value of wines ranged from 0.52 to 1.03, and decreased significantly(not including rose sweet wines). The color intensity of red and rose dry wines after sterilization increased, whereas red and rose sweet wines decreased. The DPPH radical scavenging activity of red wines and rose wines ranged between 75.50 to 89.23%, and 36.60 to 56.54%, respectively. The total polyphenol contents were 57.51~182.63 mg%. Results of this study provide scientific information to establish the sterilization process of low alcohol wines.
The objective of this study was to evaluate the quality characteristics of mozzarella cheese added wine concentrate. Mozzarella cheese was produced with different additives of wine concentrate which were 0~5%. The pH and the total acidity of the Cheese were analyzed. We also examined the radical scavenging activities for the antioxidant effect of samples and evaluated for their total polyphenol, and total flavonoid contents. The pH of Meoru wine cheese (6.28~6.37) was significantly higher and total acidity tended to decrease compared to that of the control. L* (lightness) of the wine cheese decreased with increasing amounts of wine concentrates whereas a* (redness) tended to increase. In the texture profile analysis, Meoru wine cheese showed higher values of hardness, gumminess, and chewiness. The ABTS radical scavenging activity of Meoru wine cheese showed the highest value when wine concentrate amounts were 2%. The DPPH radical scavenging activity was significantly increased in cheese added with wine concentrate. Total polyphenol contents and total flavonoid contents of Meoru wine cheese tended to increase with increasing amounts of wine concentrate. This research result highlights the positive influence of wine concentrate addition in cheese. Also, these results are expected to impact the experience programs in farm wineries.