검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2018.05 서비스 종료(열람 제한)
        화석연료는 가격의 변동이 심하고 그 매장량이 한정되어 있고 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 전 세계적으로 화석연료의 고갈과 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 지속가능한 청정 에너지자원에 대한 필요성이 대두되고 있으며, 관련된 연구개발이 활발히 진행 중이다. 탄소 중립적 친환경에너지인 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 현재 국내 폐목재 발생량은 지속적으로 증가하여 처리 및 활용방안이 필요한 실정이다. 이에 본 연구에서는 폐목재를 활용하여 생산 된 급속열분해 오일을 가스화하여 고품질 합성가스를 생산함으로써 기존의 바이오매스 직접 가스화의 단점을 극복하고자 하였다. 바이오매스를 이용한 가스화 공정은 원료인 바이오매스의 낮은 에너지 밀도로 인하여 가스화 플랜트와 바이오매스 원산지간 거리에 따라 경제성이 감소한다. 이러한 경제성 문제를 극복하기 위한 방안으로 바이오매스 원산지에서 바이오매스를 급속열분해 하여 생산된 고 에너지 밀도의 열분해오일을 가스화 플랜트로 이송하여 에너지를 생산하는 방안이 대두되고 있다. 따라서 본 연구에서는 폐목재를 원료로하여 최적조건에서 생산 된 급속열분해 오일을 원통형 가스화기(0.1 m diameter × 1.4 m height)를 사용하여 E/R ratio, 반응온도 등을 운전변수로 하여 가스화 실험을 수행하였다. 생산되는 합성가스의 조성을 Micro GC를 이용하여 분석하여 고품질 합성가스를 생산할 수 있는 최적 조건에 대한 연구를 진행하였다.
        2.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        The fast pyrolysis of biomass (larch) in a circulating fluidized bed pyrolyzer was performed and the physico-chemical characteristics of biocrude-oil was investigated. Standard sand was used for fluidizing material and various reaction temperatures from 400℃ to 550℃ was applied. Wood (larch) sample was examined thorough proximate analysis and thermogravimetric analysis (TGA). From the results of the sample test, thermal decomposition characteristics of wood (larch) was investigated. Various analyses were carried out to determine the physicochemical properties of biocrude-oil such as Higher heating value (HHV), water content, viscosity, ash content and microscopic anaysis. The maximum biocrude-oil yield was 49.9wt.% at 550℃. At this temperature, HHV and water content were 4562.0 kcal/kg and 13.8wt.%, respectively. From the study results, wood (larch) has potential as an alternative energy source.
        3.
        2017.11 서비스 종료(열람 제한)
        화석연료의 고갈 및 환경오염 문제가 대두됨에 따라 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 바이오 에너지분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소 중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 증기 또는 산소를 산화제로 가스화하여 공기에 비해 높은 발열량을 가지는 합성가스(syn-gas) 생산이 가능하고 적절한 정제 및 조성제어 공정을 거쳐 합성천연가스, FT 디젤, 메탄올, 수소 등의 고부가 합성 연료 생산에 활용할 수 있다. 그러나 바이오매스의 에너지 밀도가 낮기 때문에 가스화 플랜트와 바이오매스 생산지역이 원거리일 경우 높은 운송비용으로 경제성이 떨어지는 단점을 지닌다. 이러한 단점 극복을 위하여 바이오매스 생산지에 급속열분해 플랜트를 건설하여 에너지밀도가 높은 바이오오일을 생산하고 가스화 플랜트로 이송하여 가스화하는 방법이 대안으로 제시되고 있다. 또한 바이오오일 가스화가 바이오매스 직접 가스화에 비하여 TCI(total capital investment)가 낮아 경제적으로 유리하며 합성가스 내 타르 농도가 낮고 수소 및 일산화탄소의 수율이 높아 고품질 합성가스의 생산이 가능하다. 따라서 본 연구에서는 국산재 유래 바이오오일 가스화를 위한 기초실험으로 바이오오일의 가스화 kinetics에 관한 연구를 진행하였다. 바이오오일 시료의 무게감량을 승온 속도에 따라 측정하여 kinetics 인자들(평균반응속도, 활성화에너지)을 도출하였으며, 이를 이용하여 반응차수를 계산하였다.
        4.
        2017.11 서비스 종료(열람 제한)
        최근 석유연료의 과다 사용으로 인한 지구온난화와 환경오염 등의 문제가 심각하게 대두되고 있다. 이에 따라 탄소 중립적이며 잠재량이 풍부한 바이오매스를 활용하는 바이오에너지 생산기술 연구가 친환경 대체에너지로서 주목받고 있다. 특히 우리나라의 경우 목재 수요의 증가로 인해 폐목재는 꾸준히 발생하고 있으나 신재생에너지 중 바이오매스 에너지는 약 10%일정도로 생산 측면에서의 활용은 상당히 빈약한 상황이다. 따라서 본 연구는 이미 유렵과 북미 지역을 중심으로 활발히 연구 및 상용화가 진행되고 있는 열화학적 변환 공정 중 하나인 급속열분해 공정을 채택하였다. 급속열분해 공정은 무산소 조건에서 400~600℃의 반응온도로 간접 가열하여 바이오매스를 열적으로 분해하는 공정으로서, 2초 내외의 짧은 체류시간으로 에너지밀도가 높은 액상 생성물인 바이오오일의 수율을 극대화할 수 있다는 장점을 지니고 있다. 본 실험에 사용된 원뿔형 분사층 반응기는 일반적으로 이용되고 있는 기포 유동층에 비하여 바이오매스 입자와 유동매질 간 열 및 물질전달 속도가 높고, 비교적 큰 시료 입자도 열분해 가능하기 때문에 입자 분쇄에 소요되는 에너지를 절감할 수 있으며, 내부에 분산판이 없어 압력강하량이 적은 장점을 가진다. 본 연구에서는 바이오매스의 급속열분해 운전 조건이 열분해 생성물에 미치는 영향을 확인하기 위한 폐목재의 급속열분해 실험을 수행하였다. 폐목재의 급속열분해 실험은 반응온도와 질소유량 그리고 시료의 투입속도 등 원뿔형 분사층 반응기 내부의 운전조건 변화를 통하여 진행하였으며, 실험을 통해 생산된 액상 생성물인 바이오 오일의 물리-화학적 특성을 분석하여 열분해 조건에 따른 급속열분해 특성을 고찰하였다.
        5.
        2017.05 서비스 종료(열람 제한)
        화석연료의 고갈문제와 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 중국, 인도 등의 국가에서 경제 성장을 위한 화석연료 의존도가 계속 높아지고 있다. 그러나 화석연료는 가격의 변동이 심하고, 한정된 매장량을 지니기 때문에 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 바이오매스 및 폐자원을 활용하여 에너지를 생산하는 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 바이오에너지는 바이오매스, 폐자원으로부터 전환된 에너지 사용 시 발생되는 이산화탄소가 순환을 통하여 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적인 친환경 에너지이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 분해공정을 통하여 더욱 가치있는 에너지의 형태로 활용 가능하며, 그 중 급속열분해 공정은 무산소 조건, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 반응조건으로 하여 생산된 타르를 응축과정을 통해 액상 생성물인 바이오원유로 회수하는 공정이며 바이오원유의 회수율을 가장 높일 수 있는 공정이다. 바이오오일의 수율 및 성상은 급속열분해 운전조건에 따라 영향을 받으며 그 중 반응온도가 가장 중요한 인자이다. 따라서 본 연구에서는 낙엽송 톱밥을 원료로 하여 400 - 550℃로 반응온도를 변화시켜가며 바이오원유를 생산하고 생산된 바이오원유의 수율 및 다양한 물리화학적 분석(고위발열량, 수분함량, 점도, pH 등)을 통하여 그 특성을 파악하는 연구를 진행하였다.
        6.
        2015.11 서비스 종료(열람 제한)
        전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 현재 화석연료의 의존도가 높으나, 화석연료의 가격의 변동이 심하고, 한정된 매장량을 지니며, 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미친다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오 에너지는 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 최근까지 옥수수, 사탕수수 등의 식량자원을 에너지원으로 사용하였지만 이러한 식량자원의 사용은 국제 곡물가 폭등 및 후진국의 식량파동을 야기하므로 비 식량에너지 작물개발에 대한 연구가 활발히 진행되고 있다. 이러한 비 식량 바이오매스에 대한 연구의 일환으로 농촌진흥청 국립식량과학원에서 거대억새를 개발하였다. 거대억새는 국내에 자생하는 물억새의 일종으로 염색체수가 76개로 4배체이며 기존 물억새 대비 크기와 굵기가 2배 이상이기 때문에 수확량은 약 30 ton/ha 로 1.5배 가량 높다. 또한 셀룰로오스 함량이 44%로 많고 회분이 1.6%로 적기 때문에 에너지자원으로써의 잠재성을 지니고 있다. 따라서 본 연구에서는 거대억새를 원료로 하여 bio-oil을 생산하는 연구를 진행하였다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 공정을 통하여 더욱 가치 있는 에너지의 형태로 변환될 수 있으며 그 중 급속열분해 공정은 무산소 분위기, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 유지하여 액상생성물인 bio-oil의 수율을 극대화 하는 공정이다. Bio-oil의 수율과 품질은 급속열분해 운전조건에 영향을 받으며 그 중 반응온도는 가장 영향을 많이 미치는 인자이다. 본 연구에서는 1kg/h 급 사각형 유동층반응기를 이용, 기포유동층 영역에서 400-550℃의 온도범위로 거대억새를 급속열분해 하였고, 생성된 bio-oil의 발열량, 수분함량, 점도, GC/MS 등의 분석을 통하여 특성 및 품질분석을 실시하였다. 또한 타 목본계, 초본계 바이오매스들과의 비교를 통하여 거대억새 bio-oil의 연료로써 가치평가도 함께 실시하였다.
        7.
        2015.05 서비스 종료(열람 제한)
        최근 교토의정서 발효로 인한 이산화탄소 배출량 감축의무 등에 따라 세계 여러 나라에서는 바이오매스 및 폐기물에너지에 대한 투자와 연구 개발이 활발히 진행되고 있다. 바이오매스를 에너지로 전환하는 열화학적 전환공정으로는 연소, 가스화, 급속열분해 공정이 있으며, 이중 급속열분해 공정은 바이오매스를 액상 연료로 전환하는 공정으로, 공정을 통해 생산되는 bio-oil은 발전용, 수송용 연료, 화학소재 등 다양한 분야에 활용이 가능하기 때문에 연구개발이 활발히 이루어지고 있다. 농촌진흥청에서 국립식량과학원에서 개발한 에너지작물인 거대억새 1호는 국내에 자생하는 물억새 일종으로서 염색체 수가 76개인 4배체이다. 간장이 4m, 경태가 9.6mm로서 일반 물억새에 비해 2배 이상 크고 굵기 때문에 수확량이 30ton/hr 정도로 일반 물억새에 비해 50% 이상 많다. 줄기가 고사하면 줄기에 붙어 있는 잎집과 잎이 대부분 탈락되어 셀롤로오스 함량이 44%로 많고 회분 함량이 1.6%로 적기 때문에 bio-oil 제조용으로 좋은 연료이다. Bio-oil을 안정적으로 발전용, 수송용 연료로 사용하기 위해서는 고품질의 bio-oil을 생산할 수 있는 공정 기술이 기반이 되어야 한다. Bio-oil의 수율 및 품질은 급속열분해 운전조건에 영향을 받기 때문에 높은 수율의 고품질 bio-oil을 생산하기 위해서는 급속열 분해 공정의 최적운전 조건 도출 및 bio-oil의 물리-화학적 특성 변화에 대한 연구가 필수적으로 요구된다. 본 연구에서는 급속열분해 반응 온도가 거대억새 bio-oil의 물리-화학적 특성에 미치는 영향을 파악하기 위해서 사각형 유동층 급속열분해 반응기를 이용하여 급속열분해 실험을 수행하였다. 급속열분해 실험은 400~550℃ 범위에서 수행되었으며, 급속열분해 반응온도에 따른 생성물의 수율을 측정하였다. 그리고 급속열분해 반응온도 변화에 따른 bio-oil의 수분 함량, 발열량, 점도 변화와 GC/MS 분석을 통하여 bio-oil 내 성분 변화를 살펴보았다.