검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 35

        33.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [NR3=NEt3 1, N(C2H4OH)3 2] in ethanol, while commercial resin has NMe3 as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.
        34.
        2000.06 KCI 등재 서비스 종료(열람 제한)
        A kinetic study for nitrate removal by anion exchange resin was performed using continuous column reactors. Kinetic approach from the packed bed showed the reaction rate constant k1 was 0.07∼0.17 ℓ/㎎·hr and maximum exchange quantity q0 was 27.75∼31.81 ㎎/g. The results from the continuous column well agreed with that from the batch reactor. An economic analysis of the water treatment plant by anion exchange resin with a regenerating system was performed to design plant and process. Based on the treatment of 20 ㎎/ℓ nitrate-contained wastewater of 10,000 gallons per day to 2 ㎎/ℓ , total capital cost and total annual cost are estimated to be 836 million wons and 211 million wons, respectively.
        35.
        2000.04 KCI 등재 서비스 종료(열람 제한)
        A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Langmuir model were qmax=29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed better fit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the approximate first-order reaction, rate constant k1 was 0.16 L/㎎·hr. Effective diffusion coefficient was obtained in the range from 9.67×10 exp (-8) to 1.67×10 exp (-6) ㎠/sec for initial concentration change, and from 6.09×10 exp (-7) to 3.98×10 exp (-6) ㎠/sec for reaction temperature change. Activation energy during the diffusion was calculated as 36 ㎉/㏖.
        1 2