검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 50

        26.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80.
        4,000원
        27.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl (). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.
        4,000원
        28.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The magnetic Nd-Fe-B powders were prepared by a thermochemical method, consisting of the processes of spray-drying, debinding, milling, H-reduction, Ca-reduction, and washing. The optimum process conditions were studied by microstructural and thermal analysis. The resultant Nd-Fe-B powder was spherical with the size of 1 . Effects of the process parameters of each step on the microstructure of the powders were investigated, and their magnetic properties were evaluated
        4,000원
        31.
        2003.06 구독 인증기관·개인회원 무료
        나노입자는 일반적인 크기의 입자에서 볼 수 없는 특성을 나타내므로 촉매, 광학, 자성기록매체, 자성유체로의 자유로운 응용이 기대되어지고 있으며, 다양한 조성의 나노재료 및 제조공정에 관한 연구개발이 활발히 이루어지고 있는 추세이다. 이중 나노재료제조공정은 기상응축, 열분해법, 플라즈마법 및 볼밀링법 등이 상용화되어 있으며, 본 연구에서는 화학적균일성과 다양한 조성으로의 응용이 용이한 화학기상응축공정을 이용하여 Fe/N나노분말을 제조하였다. 제조된 Fe/
        33.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-Co nanocomposite powders with different composition were prepared by chemical vapor condensation (CVC) process and their characterizations were studied by means of X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The particles having the mean size of 5~25 nm consisted of metallic cores and oxide shells. The Co contents and particle size increased with increasing the carrier gas flow rate of Co precursor. The saturation magnetization and coercivity increased with increasing Co content. and the saturation magnetization maximized at the 40 wt.%Co. The Fe-Co nanocomposite powder oxidized at showed the maximum coercivity of 1739 Oe.
        4,000원
        37.
        2002.06 구독 인증기관·개인회원 무료
        나노미터 크기의 결정립을 가지는 나노분말 및 나노복합분말의 제조와 특성에 관한 연구가 매우 활발하다. 나노복합분말의 제조방법에는 기상증발후 응축법, 화학응축법, 기계적합금법 등이 있으나, 고순도 및 균일한 크기분포의 분말과 응집되지 않은 분말의 제조 조건을 가장 잘 만족하는 방법은 화학기상응축법(Chemical Vapor Condensation; CVC)이다. 본 연구그룹 에서는 CVC밤법으로 이용하여 공구/금형재료에 가장 많이 사용되는 WC/Co 합금
        40.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanosized tungsten carbide powders were synthesized by the chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(). The effect of CVC parameters on the formation and the microstructural change of as-prepared powders were studied by XRD, BET and TEM. The loosely agglomerated nanosized tungsten-carbide() particles having the smooth rounded tetragonal shape could be obtained below in argon and air atmosphere respectively. The grain size of powders was decreased from 53 nm to 28 nm with increasing reaction temperature. The increase of particle size with reaction temperature represented that the condensation of precursor vapor dominated the powder formation in CVC reactor. The powder prepared at was consisted of the pure W and cubic tungsten-carbide (), and their surfaces had irregular shape because the pure W was formed on the powders. The and W powders having the average particles size of about 5 nm were produced in vacuum.
        4,000원
        1 2 3