검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metals had been significantly substituted by synthetic polymers in most of our daily requirements, thus relaxing our life. Out of many applied areas, synthetic polymers especially conducting polymers had shown their marked effect and potential. Batteries, pseudocapacitors, superconductors, etc. are the potential zones where conducting polymers are chiefly employed owing to their appreciable conductivity, cost efficiency, and corrosion inhibition nature. Apart from energy storage devices, these conducting polymers find their potential application in biosensors, lasers, corrosion inhibitors, electrostatic materials, conducting adhesives, electromagnetic interference shielding, and others. These all applications including energy storage are due to astonishing properties like high conductivity, flexibility, tuneability, easy processibility, chemical, thermal and mechanical stability, easy and enhanced charge transportation, lightweight, etc. Conducting polymers are extensively studied for their application in energy storage batteries, for which the material under investigation needs to be electrically conductive. However, the conducting nature of these specific conducting polymers is dependent on numerous factors. This review discussed the effect of certain potential factors such as polymerization techniques temperature, doping, bandgap, extended conjugation, solvent, etc. on the electrical/electrochemical conductivity of these conducting polymers. These all factors with their specific variations are found to have a noticeable consequence on the electrical conductivity of the investigated conducting polymer and hence on the energy storage carried by them. This review could be proved beneficial to the readers, who can judiciously implement the conclusions to their research related to conducting polymers and their composites for generating highly efficient energy storage systems.
        5,200원
        2.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We study MHD wave propagation in a gravitationally stratified isothermal viscous atmosphere of the Sun, permeated by a uniform magentic field. We perform numerical simulations by launching a slow wave on the upper boundary. The driven slow wave propagates down from lowβ- to high-β plasma across the region where the plasma β is unity. It is found that mode conversion takes place at z ≈ -1.8 in the layer β ≈ 1. The amplitudes of horizontal and vertical velocites are smaller than those obtained in the absence of viscosity.
        3,000원
        3.
        2013.06 구독 인증기관 무료, 개인회원 유료
        This study was undertaken to determine free radical scavenging capacity and oxidative DNA damage protecting activity of methanol extract of red tea stem. The extract was subjected to assess their antioxidant potential using various in vitro systems such as DPPH•, ABTS•+ , super oxide and nitric oxide free radicals and it exhibited IC50 values of 68.88 ± 1.1, 12.08 ± 0.65, 404.38 ± 1.6, 93.6 ± 2.7, µg/mL respectively. Red tea extract also showed ferric reducing ability (FRAP) with 2606.85 mmol Fe (II)/g of extract. Furthermore, Methanol extract of red tea stem showed significant DNA damage protecting activity in concentration dependent manner against H2O2+UV induced photolysis on pUC19 plasmid DNA. Results of this study showed that the methanol extract of Red Tea stem has strong antioxidant potential along oxidative DNA damage protecting capacity that would be the significant sources of natural antioxidants, which might be helpful in preventing the progress of various oxidative stress generated diseases. Further study is necessary for isolation and characterization of the active antioxidants, which may serve as a potential source of natural antioxidant.
        4,000원
        4.
        2015.07 서비스 종료(열람 제한)
        Rice gene functional annotation is greatly hindered due to functional redundancy. Based on OGRO database information, function of only 1022 genes were characterized previously where estimated expressed genes is approximately 50000. TFs protein class consist of 80 families and function of only 211 were reported. To address this issue, we developed web resource using MySQL, PHP and related frame work. Database integrates expression pattern and diverse data in phylogenomic contest. Since TFs plays diverse role in plants, meta-expression analysis would provide putative function of remaining genes. Using this approach and in-house database, we have identified featured expression groups: 228 belongs to anatomy, 224 to abiotic stress, 202 to biotic stress and hormone responsive group includes 267 genes. Out of 315 known genes through loss of functional studies, 294 genes have no closely related family members. Among 12 pairs with probes in database, 6 genes have PCC value with more than 0.5 among closely related genes. These data suggest that TFs showing more than 0.5 PCC value among closely relating family members more likely have functional dominancy. This study will provide useful functional information for whole rice TFs and suggest promising functional genomic studies.
        10.
        2014.07 서비스 종료(열람 제한)
        Functional identification of rice on a whole genome scale is required to significantly improve the quality of rice, rice yield, and stress tolerance in response to changing climate. In addition to conventional approaches, new methodologies are required for identification of key genes associated with new agronomical traits. Systems biology is an upcoming trend in the field of functional genomics. Recently, there has been a significant improvement in the resources for systems biology in Oryza sativa (rice), a model crop. These resources include whole genome sequencing/re-sequencing data, transcriptomes, protein-protein interactomes, reactomes, functional gene network tools, and gene indexed mutant populations. The integration of diverse omics data can lead to greater understanding of the functional genomics of rice. Here, we address the development and current progress of the resources available for systems biology in rice: Genome browsers and databases for the orthology identification, transcriptome analysis, protein-protein interaction network and functional gene network analyses, co-expression network, metabolic pathway analysis for promoter analysis, and gene indexed mutants.