검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The observed distribution of a blending-corrected sample of Einstein ring crossing times, tE, for microlensing events toward the galactic bulge/bar are analyzed. An inspection of the distribution of crossing times suggests that it may be bimodal, indicating that two populations of lenses could be responsible for observed microlensing events. Given the possibility that microlensing in this direction can be due to the two most common classes of stars, main-sequence and white dwarf, we analyze and show via Monte Carlo simulations that the observed bimodality of tE can be derived from their accepted mass functions, and the density distributions of both stellar populations in the galactic disk and bulge/bar, with a transverse velocity distribution that is consistent with the density distribution. Kolmogorov-Smirnov (KS) one sample tests shows that a white dwarf population of about 25% of all stars in the galaxy agrees well with the observed bimodality with a KS significance level greater than 97%. This is an expanded and updated version of a previous investigation (Wickramasinghe, Neusima, & Struble, in Mao 2008). A power-point version of the talk, with introductory figures, is found at: https://sites.google.com/site/rhkochconference/agenda-1/program.
        2.
        2001.12 KCI 등재 서비스 종료(열람 제한)
        Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer to the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentrations of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDI. We studied to find out the relationship between the measured chlorophyll a from the ship and the estimated chlorophyll a from the SeaWiFS satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) in the northern part of the East China Sea. Chlorophyll_a=0.121Ln(X) + 0.504, R2 = 0.73 (1) We also determined total suspended sediment mass (SS) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-situ data and the ratio (LWN(490 nm)/LWN(555 nm)) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS=-0.703 Ln(X) + 2.237, R2 = 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMI, Terra/MODIS and Orbview/SeaWiFS.