환경특성이 초미소 식물플랑크톤의 분포에 미치는 영향을 파악하기 위해 서태평양의 열대와 아열대 수역(TSWP)과 동해에서 2002년 9월 조사를 하였고, 동중국해 대륙붕수역 (C-ECS)은 2003년 8월에 조사를 수행하였다. 초미소 식물플랑크톤은 flow cytometry 방법을 이용 Synechoroccus, Prorhlorococcus 그리고 picoeukaryotes의 3개체군으로 구분 계수하였다. 물리화학적 환경이 상이한 3곳의 조사수역 별로 초
Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer to the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentrations of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDI. We studied to find out the relationship between the measured chlorophyll a from the ship and the estimated chlorophyll a from the SeaWiFS satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) in the northern part of the East China Sea.
Chlorophyll_a=0.121Ln(X) + 0.504, R2 = 0.73 (1)
We also determined total suspended sediment mass (SS) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-situ data and the ratio (LWN(490 nm)/LWN(555 nm)) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea.
SS=-0.703 Ln(X) + 2.237, R2 = 0.62 (2)
In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMI, Terra/MODIS and Orbview/SeaWiFS.