검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2006.04 구독 인증기관·개인회원 무료
        A comparative study is made on root bending fatigue performance of spur gears and plane bending fatigue performance of notched test bars. R = 0 root bending fatigue tests are made on small spur gears with critical root radius 1.0 mm. The results are compared to plane bending fatigue tests of 0.9 mm radius notched specimens. Results are presented for tests on 4%Ni/2%Cu/1.5%Mo prealloyed PM steel with addition of about 0.6% graphite. Predicted values from the test bars coincide well with the results obtained from the gear root fatigue tests.
        2.
        2006.04 구독 인증기관·개인회원 무료
        Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover tests were performed to complete the investigation. Both on fatigue and samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for sintered and around 4.7 for sintered materials. The same dependence to process parameters is not found for .
        3.
        2006.04 구독 인증기관·개인회원 무료
        Optimized choice of material for two principally different types of PM components is presented. The first is characterized by high stresses in areas with high stress concentrations (for example synchronizer hubs with very sharp notches, typically <0.25mm in the pre-synchronizer slot and the inner splines). The second type has slightly larger notch radii (small spur gears and sprockets with typically notch radii between 1- 3mm). Diffusion alloyed materials are well suited for sharp notch components. Pre-alloyed materials are also well suited for applications with sharp notches if compressive residual stresses in the notch roots are created by appropriate process control. A free choice of material is available for components with the larger notch radii.