검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Owing to the great demand for portable and wearable chemical sensors, the development of all-solid-state potentiometric ion sensors is highly desirable considering their simplicity and stability. However, most ion sensors are challenged by the penetration of water and gas molecules into ion-selective membranes, causing unstable and undesirable sensing performances. In this study, a hydrophobic ionic liquid-modified graphene (Gr) sheet was prepared using a fluid dynamics-induced exfoliation and functionalization process. The high hydrophobicity and electrical double-layer capacitance of Gr make it a potential solid-state ion-to-electron transducer for the development of potentiometric sodium-ion ( Na+) sensors. The as-prepared Na+ sensors effectively prevented the formation of the water layer and penetration of gas species, resulting in stable and high sensing performances. The Na+ sensors showed a Nernstian sensitivity of 58.11 mV/[Na+] with a low relative standard deviation (0.46), fast response time (5.1 s), good selectivity (K < 10− 4), and good durability. Furthermore, the Na+ sensor demonstrated its feasibility in practical applications by measuring accurate and reliable ion concentrations of artificial human sweat and tear samples, comparable to a commercial ion meter.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A facile and efficient method was developed to prepare highly stretchable and conductive graphene conductors with wrinkled structures by the mechanical stretching and shrinking of elastomeric substrates, in which graphene inks were printed on a prestretched elastomeric substrate. Stretchable and exfoliated graphene inks were prepared by mixing graphite and Ecoflex in a shear-assisted fluid dynamics reactor. The resultant graphene conductor exhibited excellent stretchability at 150% strain and high electrical conductivity of 64 ± 1.2 S m− 1. The resistance of the conductor did not change in bent, twisted, and stretched states. The resistance did not change during 10,000 cycles of stretching/releasing, with a maximum strain of 150%. Based on the graphene conductor, a stretchable conductometric sensor with a two-electrode configuration was fabricated to measure impedance changes at different concentrations of electrolyte ions. This sensor exhibited a good and linear sensitivity curve (298.61 Ω mM− 1, R2 = 0.999) in bent and stretched states.
        4,000원
        3.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report potentiometric performances of ion-to-electron transducer based on reduced graphene oxide (RGO) for application of all-solid-state potassium ion sensors. A large surface area and pore structure of RGO are obtained by a hydrothermal self-assembly of graphene oxide. The extensive electrochemical characterization of RGO solid contact at the interface of ionselective membrane and gold electrode shows that the potassium ion-selective electrode based on RGO had a high sensitivity (53.34 mV/log[K+]), a low detection of limit (− 4.24 log[ K+], 0.06 mM) a good potential stability, and a high resistance to light and gas interferences. The potentiometric K+- sensor device was fabricated by combining of screen-printed electrodes and a printed circuit board. The K+- sensor device accurately measures the ion concentration of real samples of commercial sports drinks, coke and orange juice, and then transfers the collected data to a mobile application through a Bluetooth module. The screen-printed ion sensors based on RGO solid contact show a great potential for real-time monitoring and point-of-care devices in human health care, water-treatment process, and environmental and chemical industries.
        4,000원
        4.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Plastic pollution is threatening human health and ecosystems, resulting in one of the biggest challenges that humanity has ever faced. Therefore, this study focuses on the preparation of macroporous carbon from biowaste (MC)-supported manganese oxide (MnO2) as an efficient, reusable, and robust catalyst for the recycling of poly(ethylene terephthalate) (PET) waste. As-prepared MnO2/MC composites have a hierarchical pore network and a large surface area (376.16 m2/g) with a narrow size distribution. MnO2/MC shows a maximum yield (98%) of bis(2-hydroxyethyl)terephthalate (BHET) after glycolysis reaction for 120 min. Furthermore, MnO2/MC can be reused at least nine times with a negligible decrease in BHET yield. Based on this remarkable catalytic performance, we expect that MnO2-based heterogeneous catalysts have the potential to be introduced into the PET recycling industry.
        4,000원
        5.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report a general method for preparation of a one-dimensional (1D) arrangement of Au nanoparticles on single-walled carbon nanotubes (SWNTs) using biologically programmed peptides as structure-guiding 1D templates. The peptides were designed by the combination of glutamic acid (E), glycine (G), and phenylalanine (F) amino acids; peptides efficiently debundled and exfoliated the SWNTs for stability of the dispersion and guided the growth of the array of Au nanoparticles in a controllable manner. Moreover, we demonstrated the superior ability of 1D nanohybrids as flexible, transparent, and conducting materials. The highly stable dispersion of 1D nanohybrids in aqueous solution enabled the fabrication of flexible, transparent, and conductive nanohybrid films using vacuum filtration, resulting in good optical and electrical properties.
        4,000원
        6.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원